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Foreword by Brian Strong, Chief Resilience Officer:

Building a climate-resilient San Francisco requires us to understand and plan for current and 
future environmental hazards. Data and projections about the likely impacts of climate change 
can be used in the planning process to provide us with key information to establish policies for 
a climate-resilient city and to implement adaptative measures that can help protect our 
residents. 

San Francisco’s research into climate change impacts began in the early 2000’s, as the City 
initially sought data on how a warming climate would affect our water supply. Since that time, 
we have been working on many different facets of climate change, including developing 
climate focused data sources to enable forward thinking decision making. As one example, we 
have already developed sufficient data to help us better understand how we can adapt to 
rising seas through the development of the 2014 Sea Level Rise Guidance for Capital Projects, 
2016 Sea Level Rise Action Plan, and 2020 Sea Level Rise Vulnerability and Consequence 
Assessment. 

Another priority has been to better understand the frequency and strength of precipitation 
events and how they may affect inland flooding. To do so, San Francisco undertook a unique, 
first of its kind in the nation climate modeling collaboration between a municipality, climate 
scientists at Lawrence Berkeley National Laboratory (LBNL), and climate consultants at 
Pathways Climate Institute to create a research team that focused on a better understanding 
of future precipitation events through climate modeling. Using supercomputing resources at 
LBNL’s National Energy Research Scientific Computing Center (NERSC), the research team 
found that the effect of climate change on future storms is predicted to be significant, leading 
to more powerful events unleashing substantially more water. This initially resulted in a 
report published in April 2022. This two-volume report (San Francisco Bay Area Precipitation 
In A Warmer World, Volume 1: State of the Science and Volume 2: Future Precipitation 
Intensity, Duration, and Frequency) provides groundbreaking scientific data on precipitation 
events for use by the entire City as we develop planning tools and policies to adapt to a 
changing climate with increasingly extreme storms. These two volumes highlight that both 
large and small storms are increasing in intensity. 

The City agencies that funded these studies include the San Francisco Public Utilities 
Commission, San Francisco Office of Resilience and Capital Planning, San Francisco 
International Airport, and the Port of San Francisco. They are joined by other City agencies 
that will be using this data into develop and improve resilience plans. 

The results of Citywide climate change research projects illustrate how San Francisco must 
think holistically about how to manage increased rainfall, sea level rise, drought, extreme 
heat, and other climate induced events. Toward that end we created the ClimateSF program 
which brings together key City agencies whose services could be critically impacted by climate 
change. These agencies are taking collective action through planning, policy, and guidance, 
championing a coordinated vision on climate resilience that streamlines City responses and 
promotes an equitable, safe, and healthy city for generations to come. The precipitation 
information in these volumes is fundamental to our ability to create meaningful solutions.
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https://www.sciencedirect.com/science/article/pii/S2212094722000275?via%3Dihub


While this Extreme Precipitation study analyzed future potential rainfall in San Francisco, it 
can be modified and used throughout the Bay Area to enhance the region’s understanding 
of precipitation under a warming climate. The study’s findings may not be relevant outside 
of the Bay Area, therefore use of the study’s findings beyond the Bay Area is not 
recommended without independent scientific verification. 

Brian Strong
Chief Resilience Officer
City and County of San Francisco
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Executive
Summary
Background
For decades, climate scientists have warned of more intense storms that will occur more 
frequently. Recent scientific research highlights that today’s extreme storm events are a 
mere preview of what is to come as the climate continues to warm. The San Francisco 
Bay Area (Bay Area) has experienced damage and disruption from numerous extreme 
storm events that delivered heavy precipitation and other severe storm conditions, such 
as strong winds and storm surge. These extreme precipitation events are expected 
to increase in intensity with climate change, increasing the likelihood of flooding, 
particularly when coupled with sea level rise. 

For San Francisco, understanding how large storms might change under a warming 
climate was identified as a priority action for the City departments in the 2016 Sea Level 
Rise Action Plan (San Francisco, 2016). The San Francisco Public Utilities Commission 
(SFPUC), the Port of San Francisco (Port), the San Francisco International Airport (SFO), 
and the City and County of San Francisco’s Office of Resilience and Capital Planning all 
have an interest in understanding how future storms could impact the City’s residents, 
business activities, its critical infrastructure, and its natural resources. With funding 
from the four agencies, Pathways Climate Institute and Lawrence Berkeley National 
Laboratory (LBNL) completed this Extreme Precipitation Study to provide information 
that San Francisco can use to provide actionable information that San Francisco can 
use to prepare for future extreme precipitation.

The findings from this study are presented in two volumes to meet the needs of decision-
makers and practitioners. Developed for City decision makers, Volume 1 provides 
an overview of the state of the science of extreme precipitation for San Francisco 
and the greater Bay Area region. Volume 2 (this volume) presents a suite of updated 
Intensity-Duration-Frequency (IDF) curves that incorporate projected changes in future 
precipitation through the end of the century. IDF curves describe the relationship between 
the probability of a certain amount of rain falling (intensity), for a certain amount of time 
(duration), and how often this combination will impact their area of interest (frequency). 
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For the purposes of these Guidebooks, and as defined by the National Oceanic 
and Atmospheric Administration National Severe Storms Laboratory, flooding 
“is an overflowing of water onto land that is normally dry. Floods can happen 
during heavy rains, when ocean waves come on shore, when snow melts quickly, 
or when dams or levees break. Damaging flooding may happen with only a few 
inches of water, or it may cover a house to the rooftop. Floods can occur within 
minutes or over a long period, and may last days, weeks, or longer. Floods are 
the most common and widespread of all weather-related natural disasters.”

 | Executive Summary



Bay Area Precipitation
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The Bay Area has a Mediterranean climate, with about 75% of its annual average rainfall 
between November and March, and little to no rainfall occurring in summer. The Bay Area 
oscillates between extremes, with periods of below average annual rainfall (e.g., drought 
conditions) interspersed with years with above average annual rainfall. Two storm types 
bring rainfall to the Bay Area:

• Extratropical cyclones (ETCs) develop offshore and can bring cloudiness and mild
showers to severe gales, thunderstorms, blizzards, and heavy rain.

• Atmospheric rivers (ARs) originate in the tropics and can bring light beneficial rain
to torrential downpours and high winds.

Each storm type can occur on its own, or they can occur in combination, which  
represents the most common storm type affecting the West Coast (Zhang et al., 
2019). A single AR event can also co-occur with a series of back-to-back ETCs. AR 
events can be associated with a series of back-to-back extratropical cyclones (Dacre 
& Pinto, 2020), as occurred during the early winter storms in 2022-2023. When an ETC 
is accompanied by a rapid atmospheric pressure drop, explosive cyclogenesis occurs. 
The rapid pressure drop creates a “bomb cycle” which is often associated with strong 
winds, heavy rains, and severe weather conditions (Sanders & Gyakum, 1980; Zhu & 
Newell, 1994). 

The goal of the Extreme Precipitation Study was to understand how these storm 
types might change with a warming climate and how these changes impact rainfall 
projections. 

Executive Summary |

The findings and IDF curves presented use the highest emissions scenario evaluated by 
the Intergovernmental Panel on Climate Change (IPCC), which is associated with 4 to 
5 degrees Celsius of warming by 2100 (IPCC, 2021). Volume 2 also provides a scaling 
mechanism whereby the results can be translated to any future warming scenario.

Source: CalWater 2015



Volume 1 provides background on the current state of the 
science and defines key storm characteristics, presents 
the selected historical storms, and describes how these 
storms and storm types will change over time. Volume 1 
also compares the findings to both the October 2021 Bomb 
Cyclone and the series of early winter 2022-2023 storms that 
made national headlines and caused widespread flooding 
throughout the Bay Area and much of California. 

Based on the modeling, ARs and ETCs are likely to get more 
intense and severe as the climate warms (Patricola et al., 
2022). Across all storms, storm duration increased, ranging 
from 9 – 24% increase in duration by 2050 and from 18 – 
55% increase in duration by the end of century, both relative to 
historic conditions. ETCs, as well as the combination of ARs 
and ETCs, produced the greatest increase in total precipitation, 
ranging from 7 – 17% by 2050 and 26 – 37% by 2100, both 
relative to historic conditions (Patricola et al., 2022). The 
changes were also evaluated using the AR category (Cat) scale 
(akin to hurricane intensity scales we see during hurricane 
season) that provides predictive ranks, on a scale of 1 – 5, to 
incoming ARs based on integrated water vapor, the amount of 
moisture a storm system holds, and duration of event (Ralph 
et al., 2019). The scale ranges from Cat 1 (primarily beneficial) 
to Cat 5 (primarily hazardous). Rhoades et al (2020) showed 
an end-of-century shift from ARs being “mostly or primarily 
beneficial” to “mostly or primarily hazardous”. This shift is 
observed in the modeled storms. For all six storms modeled 
by LBNL, the AR categories increased in a warmer future, with 
some storms exceeding the Cat 1 – 5 scale and requiring an 
extension of the scale as high as 8. 
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Volume 1 Findings

 | Executive Summary
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In addition to analyzing the characteristics of how storms may change under a warming  
climate; we can also analyze the shorter duration intensities within the storms. Short- 
duration rainfall, such as the 1-hour or 3-hour duration, are more applicable to urban 
flooding and flash floods (Ayat et al. , 2022). Analysis of the modeled storms reveals 
that the short durations are increasing at a faster rate than longer durations and storm 
totals. For example, the 5-year, 3-hour duration is projected to increase by 20% by 2050 
and 56% by 2100, and the 100-year, 3-hour duration is projected to increase by 26% 
by 2050 and 67% by 2100 (Table 1). As the duration increases, the projected increase 
in precipitation decreases. For example, the 5-year, 24-hour duration is projected to  
increase by 17% by 2050 and 41% by 2100, and the 100-year, 24-hour duration is projected 
to increase by 22% by 2050 and 51% by 2100 (Table 2).

The change in storms can also be viewed as a change in storm frequency. For example, 
today’s 5-year, 3-hour event could become a 2-year, 3-hour event by 2050, and a 1-year, 
3-hour event by 2100. Today’s 5-year, 24-hour event could become a 3-year, 24-hour 
event by 2050, and a 1.5-year, 24-hour event by 2100. Similarly, today’s 100-year, 24-hour 
rainfall event could become a 40-year, 24-hour event by 2050, and a 20-year, 24-hour 
event by 2100.

Table 1. Summary of total rainfall accumulation and percent change from historical in 5-year and 100-
year return interval events for short-term (3-hour) duration for 2050 and 2100. 

Table 2. Summary of total rainfall accumulation and percent change from historical in 5-year and 100-
year return interval events for long-term (24-hour) duration for 2050 and 2100.

Executive Summary  |

5-year, 3-hour

5-year, 24-hour

100-year, 3-hour

100-year, 24-hour
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Flooding and the intensification of storms have dominated 
news headlines in recent years, as the long-predicted impacts 
of climate change are becoming increasingly apparent 
across California, the U.S., and the globe. Irrespective of the 
type of storm, e.g., beneficial or hazardous, AR or ETC, or a 
combination of both, all storms associated with precipitation 
can be described by three intrinsic properties:

With sufficient historical rainfall observations, IDF 
curves are created for a specific location for a specific rain 
gage. IDF curves describe the relationship between the 
probability of a certain amount of rain falling (intensity), 
for a certain amount of time (duration), and how often 
this combination will impact their area of 
interest (frequency). The longer the historic record, 
the more robust and or accurate – the resulting 
IDF curves would be. IDF curves allow a practitioner 
to quickly estimate how much precipitation may fall 
in a given duration and return period, as well as how 
sensitive that estimate is to changes in duration  
or return period. Unfortunately, IDF curves based on 
historical observations do not account for climate 
change and the  increases in extreme precipitation that 
are already occurring. The development of robust 
future condition IDF curves for San Francisco and 
SFO are the primary focus of this assessment.  

Volume 2 Findings

Intensity (I) describes the amount of rainfall per unit 
of time (often expressed as inches / hour).

Duration (D) describes the amount of time over 
which the rain falls (usually measured in minutes, 
hours, or days).

Frequency (F) describes the probability of an event 
(e.g., intensity and duration) occurring with a 
given year or years (often expressed by 
return intervals).
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Using a hybrid methodology that combines best available climate science with the state-
of-the art regional climate modeling completed by LBNL, future condition IDF curves were 
developed that capture the changes observed across different durations. Scaling factors 
for scaling historical condition IDF curves for Bay Area communities are presented in 
this Guidebook, Volume 2, with location specific future condition IDF curves provided 
for the San Francisco (SF) Downtown and SFO weather stations (i.e., rain gages). An 
example is provided to demonstrate how different communities (within the broader 
Bay Area region) can use the scaling factors to derive their own location specific future 
condition IDF curves. 

The future conditions IDF curves presented here are developed assuming a SSP5-8.5 
climate future, which is the highest greenhouse gas emissions scenario considered by 
the Intergovernmental Panel on Climate Change (IPCC, 2021). However, the findings can 
be scaled to other climate scenarios, such as SSP3-7.0 and SSP2-4.5, if required for 
risk-based decision making or sensitivity analysis. The scaling approach also provides 
robustness as climate science evolves and emission trajectories are updated in future 
IPCC reports, as the scaling approach will still hold valid. 

A future with higher static sea levels will exacerbate flooding from extreme precipitation. 
Initial modeling of wind, atmospheric pressure, and the ensuing waves and storm surge 
did not yield any immediately discernible patterns. However, the regional climate 
modeling was optimized for precipitation. More refined regional climate modeling 
that focuses on these different atmospheric components is needed to understand the 
compounding nature of extreme precipitation and other future atmospheric and 
oceanographic conditions.

Source: NOAA
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Photo: Intersection of Valley Street and Church Street in San Francisco, CA, 
on December 31, 2022. 

Photo Credit: 311 data and photos submitted by the public
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Measuring and 
Defining Storms
Understanding Storm Characteristics
Irrespective of the type of storm that impacts a community, e.g., AR versus ETC or a 
combination of both, all storms associated with precipitation can be described by three 
intrinsic properties:

The recent series of storms that 
inundated the Bay Area during 
early winter 2022-2023 provide 
useful examples to demonstrate 
the different storm components 
and how they interact to yield 
different impacts on the ground 
throughout the broader Bay Area. 

Intensity (I) describes the 
amount of rainfall per unit 
of time (often expressed as 
inches / hour).

Duration (D) describes the 
amount of time over which the 
rain falls (usually measured in 
minutes, hours, or days).

Frequency (F) describes 
the probability of an event 
(e.g., intensity and duration) 
occurring with a given year 
or years (often expressed by 
return intervals).

Map: Rainfall gages at San Francisco International Airport, 
Oakland International Airport, and Downtown San Francisco
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Precipitation Intensity

 |  Measuring and Defining Storms

Figure 1 presents the precipitation intensity (in inches per hour (in/hr) of rainfall) 
at three rain gages near San Francisco – the SF Downtown rain gage, SFO rain gage, 
and the Oakland International Airport (OAK) rain gage. The figures present the 
precipitation that fell during the series of storms between December 26, 2022 
through January 16, 2023. While many news outlets reported nine distinct AR 
events, for the purpose of this discussion, the color-coding in Figure 1 divides the 
rainfall into five separate storm events, each separated by 34 hours of no 
precipitation. When examining the atmospheric pressure (Figure 18), it is possible to 
discern nine different low-pressure systems. These low-pressure bars are included 
in grey bands in Figure 1 for reference. But, for this Guidebook, we limit the 
discussion to the five distinctive and successive storms as five different storm 
events, referred as Storms 1- 5. 

One can observe considerable variability in precipitation intensity within and across 
the different storm events, as well as across the geographies, as seen by the many 
different peaks and valleys on Figure 1, with Storm 2 by far the most intense of 
events across the three stations. During Storm 2, the most intense rainfall was 
recorded at the SF Downtown station (Figure 1a). During Storm 3, the highest peak 
intensity was recorded at the OAK station (relative to SF Downtown and SFO), and 
during Storm 5 the highest peak intensity was recorded the SFO rain gage (relative to 
the rain gages at SF Downtown and OAK). 

These location-specific precipitation data demonstrate how variable and localized 
precipitation can be within the Bay Area. If this analysis was extended to San Jose 
in the South Bay and/or Vallejo in the North Bay, the variation in precipitation 
would increase further. As with the real estate adage, when working to 
understand the impact of a single  storm within a given region, it all comes down to 
“location, location, location.” These localized storm impacts reaffirm the need for 
regional-scale climate modeling (such as that completed for this study) that can 
elucidate different topographical features that can influence both the storm track 
and amount of precipitation that falls, to provide more refined projections of future 
precipitation trends across the Bay Area. 



Figure 1. Rainfall Intensity at three Bay Area rain gages: (A) SF Downtown, (B) SFO, and (C) OAK

12Measuring and Defining Storms  | 
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Precipitation Duration and Return Period

Figure 2 presents that maximum rainfall for each duration, for each storm, across the three 
rain gage locations, and Figure 3 presents the corresponding return period (based on the 
historical record using the National Oceanic and Atmospheric Administration (NOAA) 
Atlas 14). Similar to Figure 1, the highest rainfall across all durations, for the three 
locations, occurred during Storm 2. 

At SF Downtown, the 3-hour and 12-hour durations had return periods of ~300-years 
(Figure 3a). At the SF Downtown rain gage, the 6-hour duration had a return period of about 
200 years, and the 24-hour duration had return period of about 100 years. The heaviest 
precipitation at the San Francisco rain gage fell during a 6-hour period that corresponded 
with low Bay water levels. Except for Storm 2, the other storms had return periods of 2 
years or less. However, the serial nature of storms can create flooding conditions far 
worse than if each storm occurred in isolation (Fish et al., 2022). As evidenced by the 13 
ARs (to date) during 2022-2023. As the climate continues to warm, years with multiple 
AR episodes will increase, the ARs will be warmer and hold more water vapor leading to 
potential heavier rainfall events, and the AR season is expected to lengthen (Dettinger 
et al., 2011).

At the SFO gage, Storm 2 was less intense, with the 12-hour duration just above a 25-
year return period, and a 2-day duration of a ~10-year return period (Figure 3b). The 
return periods for Storms 3, 4 and 5 were slightly higher as measured at the SFO rain 
gage than at the SF Downtown rain gage, but still largely below the 2-year return period. 
At the OAK rain gage, Storm 2 was more closely correlated with the SF Downtown rain 
gage. The precipitation at the OAK rain gage was about 0.3 to 0.5 inches less across all 
durations than the SF Downtown rain gage, resulting in lower return periods. Only the 12-
hour duration exceeded the 100-year return period, and the 6-hour and 24-hour durations 
were about a 50-year return period. 

The differences in Storm 2 across these stations highlights that the maximum rainfall 
band was centered directly over San Francisco and headed over the SF Bay 
towards Oakland. SFO, which is about 10 miles south of San Francisco, was located 
outside of the maximum rainfall band for Storm 2. 

 |  Measuring and Defining Storms



Figure 2. Rainfall totals by duration at three Bay Area rain gages: (A) SF Downtown, (B) 
SFO, and (C) OAK 
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Figure 3. Rainfall totals by duration at three Bay Area rain gages: (A) SF Downtown, (B) SFO, and (C) OAK

15 |  Measuring and Defining Storms
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Spotlight on Storm Duration
Looking more closely at Storm 2 at the SF Downtown gage, Figure 4 shows that the 
highest intensity of rainfall occurred during a strong burst towards the end of the event, 
during which 2.6 inches of precipitation fell within the peak 3-hour storm duration window. 
The peak 6-hour storm duration that yielded 3.4 inches of rain overlapped with the peak 
3-hour storm duration, and these were both enveloped within the peak  24-hour storm 
duration, which registered 5.8 inches of rainfall accumulation. Storm durations refer to 
discrete periods within a storm, such as the 3-hour period with the maximum accumulation of rainfall, 
and not a discrete storm event that is 3-hours long.

Figure 4. Storm 2 Intensity and Duration at the SF Downtown Gage
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What are IDF Curves?

From Research to 
Application

To understand how intensity, duration, and frequency may change in the future, and as 
described in Volume 1, LBNL modeled how six historical storms may change under a 
warmer future. Analysis of these simulations have provided insight into how storms may 
change from the short durations to the storm total precipitation. This information forms 
the foundation for developing future condition IDF curves. 

Modeling Changes to Storms Intensity, Duration,
and Frequency Under a Warming Planet

In the U.S. , NOAA Atlas is the de-facto standard for designing, building, and operating utility 
infrastructure relative to precipitation (Ragno et al., 2018a; Smirnov et al., 2018; Tetra Tech Inc., 
2015). For stormwater utilities, IDF curves are either based directly on NOAA Atlas 14, or the 
NOAA Atlas 14 curves are validated and/or adjusted to represent local conditions using local 
rain gage observations (Cheng & Aghakouchak, 2014; Ragno et al., 2018a; Smirnov et al., 2018). 
The SFPUC regularly validates their IDF curves and design storm with the observational record 
(May & Mak, 2013).

IDF curves describe the relationship between the probability of a certain amount of rain falling 
(intensity), for a certain amount of time (duration), and how often this combination will impact 
their area of interest (frequency). IDF curves are used by a wide range of practitioners, including 
engineers, water resource managers, and planners to manage the impact and risks related 
to extreme rainfall, and in the design of hydrologic, hydraulic, and stormwater conveyance 
systems.

IDF curves rely on frequency analysis of historic rainfall observations; therefore, IDF curves are 
created for a specific location at a rain gage. The longer the historic  record, the more robust or 
accurate the resulting IDF curves would be. IDF curves allow a practitioner to quickly estimate 
how much precipitation may fall in a given duration and return period, as well as how sensitive 
that estimate is to changes in duration or return period. 

Most cities, municipalities, or sewer districts select a specific IDF combination as a LOS 
storm or design storm as the basis for  designing and sizing flood risk reduction and 
stormwater conveyance systems. IDF curves support sensitivity testing and risk-based 
decisions, such as informing evaluations of system performance related to larger storms 
to assess if cost effective strategies could be implemented to reduce the likelihood of 
localized flooding. IDF curves also inform street design as some streets can convey 
stormwater within the curb line of the streets.  

Existing IDF Curves for the Bay Area



Precipitation frequency point estimates for the state of California in Atlas 14 Volume 6 were 
developed by the National Weather Service (NWS) and NOAA in 2011. NWS analyzed annual 
maxima time series at rain gages throughout the state to develop IDF curves as precipitation 
frequency point estimates for 5-minute through 60-day durations, and recurrence intervals of 
1-year through 1,000-year. Precipitation frequency estimates for Atlas 14 were derived from 
8,278 rain gages from multiple sources.

Figure 5 shows the NOAA Atlas 14 Volume 6 IDF Curve for Downtown San Francisco. Projected 
precipitation accumulation, or depth as a proxy for intensity (I), is presented on the y-axis in 
inches. Storm durations (D) are included along the x-axis, ranging from the 15-min to 24-hour 
storm durations. The different colored curved lines represent different storm return frequencies 
(F), ranging from the 1-yr to the 500-yr return interval. Table 3 provides the same information 
as Figure 5 in tabular format so that practitioners can quickly select the projected rainfall 
accumulation for their storm of interest, design storm, or level of service.

18From Research to Application  | 

Figure 5. NOAA Atlas 14 Volume 6 IDF Curves for Downtown San Francisco.

Table 3. NOAA Atlas 14 Point Precipitation Frequency Estimates – San Francisco Downtown (04-7772).



The Analysis Behind the IDFs

There are several criteria necessary to develop future condition IDF curves. These include:

Convection scale model physics with high spatial resolution
Climate variable output at multiple vertical levels (surface to atmospheric aloft)Sub-daily/sub-hourly temporal resolution
Long-term simulation (multi-decadal to 2100) 
Ensemble of multiple climate models
Emissions scenario (RCP8.5/SSP5-8.5) 

The WRF model simulations of the six selected storms (under historical and future 
conditions) are the primary data source that inform IDF curve development. While these 
simulations meet several of the criteria noted above, providing a robust snapshot of 
how past impactful storms could look in the future, the modeling of six discrete storm 
events at high spatial and temporal resolution alone cannot fully support the scaling of 
IDF curves to future conditions. Changes in the low frequency and high intensity storms 
require additional high-fidelity information to supplement the WRF simulations.

Although NOAA Atlas 14 is the de-facto standard, the IDF curves are based on historical 
observations using the assumption of a stationary climate. NOAA Atlas 14 does not account 
for the increasing frequency and intensity of extreme precipitation events already occurring, nor 
does it account for future increases associated with additional warming. Many communities 
have observed extreme storms that exceed NOAA Atlas 14 projections, and are seeking methods 
to develop updated existing condition and forward looking future condition IDF curves that 
consider increasing precipitation (Finzi Hart et al., 2022). 

The simplest method for scaling existing IDF curves relies on the Clausius-Clapeyron (C-C) 
relationship. However, research of recent extreme storms has shown that the C-C relationship 
likely underestimates the projected increase in precipitation (Molnar et al., 2015; Pall et al., 2007, 
2017; Patricola et al., 2022; Pendergrass, 2018; Risser & Wehner, 2017). 

Another common method for scaling existing IDF curves relies on using a scaling relationship 
derived from the statistically downscaled GCM output from the Localized Constructed Analogs 
(LOCA) ensemble (CIRCA, 2019; Kunkel et al., 2020; Mauger et al., 2018; Obeysekera et al., 2021; 
Pierce et al., 2014; Pierce & Cayan, 2017; Ragno et al., 2018b). However, in areas with complex 
topography that drive complex weather patterns such as the SF Bay Area, reliance solely on 
LOCA may underestimate projected increases in extreme precipitation (DeGaetano & Castellano, 
2017; Miro et al., 2021; Wang et al., 2020). Similar to using the C-C relationship, this approach 
derives a constant scaling parameter for application across all durations under the assumption 
that short durations and long durations will change similarly as temperatures increase. 

Application of Research to Develop Future Conditions 
San Francisco IDF Curves 

An annual maxima time series is a list of the largest storms that 
occurred each year. For example, when developing a 3-hour storm, the 

annual maximum series will contain a list of the largest 3-hour 
rainfall amounts that occurred each year to provide a more accurate 
estimate than would be obtained using annual maxima precipitation values.

Clausius-Clapeyron Relationship 
Named after Rudulf Clausius and Benoît Paul Émile Clapeyron in the 1800’s, the Clausius-

Clapeyron (C-C) relationship specifies the temperature dependence of pressure, most 
importantly vapor pressure or the water-holding capacity of the atmosphere. A common 

approximation for this relationship is that the saturation vapor pressure of air increases by about 
7 percent per degree Celsius increase in temperature. For example, in a world that is 2.5 °C 
warmer than pre-industrial conditions, the C-C relationship estimates that the water holding 
capacity of the atmosphere would increase by 17.5 percent. Future condition IDF curves 
are created by scaling the historical condition IDF curves by 17.5%. However, recent 
research has shown that the C-C relationship underestimates the projected increase 
in precipitation.
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Table 4. Summary of criteria needs for development of future condition IDF curves. 
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Table 4 summarizes the additional sources that inform the future condition IDF curves, 
including a subset of climate models from the Coupled Model Intercomparison Project Phase 
6 (CMIP6) and the downscaled LOCA ensemble. These datasets provide the temporal data 
needs for high resolution future condition IDF curves while also increasing the confidence and 
robustness through cross-validation. The use of multiple climate data sets that rely on the 
strengths of each data set helps to reduce the uncertainties inherent in relying on a single data 
source (Lopez-Cantu et al., 2020).

The future IDF curves are represented through changes in the three dimensions of  
precipitation characteristics – changes in duration, frequency, and time. The equation 
below shows how the three climate model datasets (WRF, LOCA, and CMIP6) inform the 
three primary dimensions of the future condition IDF curves.

The hybrid approach of using multiple modeling sources (WRF, LOCA, CMIP6 models) 
and climate variables (precipitation and temperature) in aggregate meets all the climate 
data criteria for scaling IDF curves. Details of the supporting analysis are presented in 
the following sections.

The Weather Research and Forecasting Model, or WRF, is a regional climate 
model that simulates weather and climate over a discrete portion of the globe. 

This is in contrast to global climate models which simulate climate over the entire 
globe.

In a review of existing approaches by other utilities or municipalities for developing future 
condition IDF curves, no approaches were considered satisfactory for application in the 
Bay Area and San Francisco.  As commissioned by SFPUC, SFO, Port, and ORCP, the study 
team instead pursued a rigorous approach using the Weather Research and Forecasting 
(WRF) regional climate modeling presented in Volume 1 as a foundation. The following 
sections describe how the WRF simulations, coupled with additional climate data sets, 
were used to develop state-of-the-art future condition IDF curves for San Francisco. 
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WRF Regional Climate Model (Volume 1 Recap)

LBNL used WRF to simulate how extreme historic storms that impacted Bay Area may 
change under a warming climate. Six historical storms, which occurred between 
1982 and 2014 were selected for analysis. The storms were modeled under their 
historical conditions and under two future time periods, 2050 and 2100, using the high 
greenhouse gas emissions scenario (RCP8.5 / SSP5-8.5). 

The following storms were selected (Table 4a):

Table 4a. Summary table of selected storms, dates, and storm type. 

The WRF simulations provide high resolution (3 km spatially, and 15 min temporally) 
model outputs for the six storm events in their historical (as they occurred) and future 
(as they could be) condition. This provides a high accuracy, but narrow snapshot, of the 
future intensity and duration of future extreme storms in the Bay Area.

Each storm event is simulated 10 times with slight perturbations in time, providing an 
ensemble of the event in both historical and the two future periods. The WRF model 
output provides climate variables necessary for evaluating precipitation trends, including 
temperature, specific humidity, and wind speeds at 44 pressure-based model levels 
(which can be translated to absolute elevation).

A key finding from LBNL’s storm total precipitation analysis was the difference in storm 
response to a warming climate. Among the six storms simulated WRF storms, those that 
occurred only as ARs showed a weak or even negative future trend, indicating a minimal 
change in response to a warming climate. However, storms that were ARs combined 
with ETCs showed a strong increase in storm total precipitation across all simulations 
(Table 4b). The storm totals presented in Volume 1 and Volume 2 may differ from those 
presented in Patricola et al. (2020) due to differences in size of the domain use to 
calculate storm totals. Patricola et al. (2020) used a larger domain to better understand 
the response of the storm across its entire breadth, whereas this study focused more 
specifically on the Bay Area. 

Table 4b. Summary of Analysis by Storm Type 
Source: Patricola et al. 2022
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Figure 6. Analysis of Shorter Duration Trends in 2050 and 2100. Storms 1a, 1b, 4, and 5 (warm 
colors) are AR+ETC storms while storms 2 and 3 (cool colors) are AR only.
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IDF Curve Duration – WRF

The WRF simulations provide the foundation for understanding how the different storm 
types evolve with climate change, primarily informing the future IDF trends across 
the time dimension. Patricola et al. (2022) focused on changes in multi-day storm 
totals across the six modeled storms. Additional analysis of the WRF simulations 
assessed the climate change response to the shorter durations. The analysis of 
shorter durations (down to 15-min) applied a moving time window (aligned to each  
duration of interest) to the continuous precipitation output at each WRF grid cell in 
the study domain, and the temporal maximum was assigned as the specified duration  
precipitation depth. The results of this analysis were then averaged spatially across the 
entire study domain and the percentage of change between the historical and future  
condition runs were calculated. Figure 6 shows the expected percent increases in 
precipitation from short to longer durations within the WRF simulated storms in 2050 
and 2100.  
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The statistically downscaled climate projections from the LOCA ensemble are used to 
inform the frequency dimension of the future IDF curves. The LOCA ensemble provides 
temperature and precipitation data at a six km horizontal resolution for 32 global climate 
models from the CMIP5 archive (Pierce & Cayan, 2017). The spatial resolution of the 
LOCA grid cells is improved over the native coarse resolution GCM; however, the Bay 
Area’s complex topographic drivers of precipitation patterns and magnitudes are still 
highly smoothed in the downscaled data set. 

Historical to future period analysis of the LOCA dataset focused on a subset of 10 GCMs 
recommended by the California Department of Water Resources for water resources 
planning and evaluation (based on performance metrics evaluated at a global scale, 
western U.S.  scale, and locally across California considering both temporal and spatial 
patterns in the historical climate) (Bedsworth et al., 2018; Pierce et al., 2016). Using the 
daily precipitation output from the LOCA GCMs for the historical to future periods, percent 
change for the 1-year through 500-year return periods (24-hour duration) were calculated 
following a traditional an extreme value analysis (EVA). Analysis shows a definitive 
increase in 24-hour precipitation by mid-century (2050) and a strengthening of that trend 
by the end of century (2100). There is also a trend of larger storms having amplified 
percent changes relative to the smaller storms (e.g., the percent change in the 100-year 
depth by 2050 and 2100 is greater than the percent change in the 5-year depth across 
same time horizons). 

The LOCA analysis EVA is stable; however, the percent change derived from LOCA are not 
directly used to inform future IDF curves because: 1) downscaling of GCMs can 
underestimate extreme events, 2) LOCA projections are not available at subdaily durations, 
and 3) WRF simulations have higher spatial and temporal resolution than the LOCA data. 
The WRF simulations also better capture the physical processes influencing extreme 
precipitation in the Bay Area. However, the WRF findings cannot inform the frequency (i.e., 
return period) dimension of the future IDF curves; therefore, the long-term simulations from 
the LOCA ensemble supplement the short-term WRF simulations. The relative changes 
for all return periods for 2050 and 2100 are applied to the historical return period of the 
WRF storm events, yielding a future scaling factor for every duration and return period. 

Across all durations, the expected changes in the combined AR and ETC storms are 
significant (Storm 1, 2, 4 and 5), but weekly defined for the AR only storms (Storm 2 and 
3) and is consistent with the findings in Patricola et al. (2022). Additionally, this
assessment identified a consistent trend of amplified precipitation changes relative to
storm total in the shorter durations, regardless of storm type. The amplified change in the
shorter durations is detectable due to the high temporal resolution of the WRF
simulations down to the 15-minute duration. Ayat et al. (2022) confirmed similar
findings based on observational data, providing confidence in these findings.

Storm mechanics suggest that the most likely explanation for the differences in storm 
response to warming between AR only and AR+ETC storms is the presence of ETC 
induced convection, which forces the additional moisture to precipitate out. Thus, the 
fundamental factor influencing whether a storm will worsen in a warmer climate is the 
presence of an ETC, which makes it logical that ETC only events would track similarly as 
AR+ETC events in a warming climate. To account for storm type considerations, the IDF 
scaling associated with the WRF simulations was adjusted by 91% (the ETC + AR+ETC 
storm percentage identified by Zhang et al. (2019) to account for the 9% of AR only events 
that will likely remain unchanged in a warming climate.

IDF Curve Frequency – LOCA
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Comparison of WRF Scaling to 
Clausius-Clapeyron Scaling

Changes in the WRF precipitation results (from historical to future condition for 
2050 and 2100) were compared with the classic C-C relationship at the surface and 
multiple elevations aloft. The changes for both the WRF simulated precipitation and 
the C-C relationship were calculated as a ratio (future/historical) and then these two 
values compared as a ratio of those ratios. The results at 700 mb aloft are shown in 
Figure 7, with values above 1 denoting higher precipitation changes than would be 
expected from the classic C-C relationship (super C-C) and values below 1 denoting 
lower precipitation changes than expected. The results for the 700 mb pressure level 
were selected as the best elevation of those considered, since it shows an expected 
C-C ratio of 1 for the longer durations and storm totals, but a super C-C ratio of greater
than 1 for the shorter durations. These findings are consistent at both 2050 and 2100,
with the shorter durations super C-C ratio increasing from 2050 to 2100.

This dynamic fits with the current understanding of storm mechanics where 
the dynamic effect of the shorter durations are the main factor driving super C-C 
precipitation, but across the full storm duration those effects average out leading to 
storm totals that fit the classic C-C relationship (shown a ratio of 1 on Figure 7). 

These findings also illustrate that developing IDF curves solely using the classic 
C-C relationship will underestimate the increases in the shorter durations, further
supporting an approach that considers multiple data sources that address these
accelerating increases in short duration precipitation. Increases in the short durations
are more likely to cause flash flooding, sometimes with little time to prepare ahead of
the event (Ayat et al., 2022)

Figure 7. Trends in C-C Scaling (AR+ETC storms only at 700mb height)
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The final data set used in this assessment is state-of-the-art GCM output from the 
CMIP6 ensemble, which supports the most recent IPCC AR6 (IPCC, 2021; Stockhause 
& Lautenschlager, 2017). While the WRF simulations support the development of 
the future IDF curves for 2050 and 2100 for the SSP5-8.5 climate scenario, the 
temperature and precipitation projections from the CMIP6 models are needed to 
develop future IDF curves for other time horizons and warming scenarios (i.e.,  
alternate future scenarios).

To pair with the WRF findings on the C-C ratio for the discrete storms, temperature 
data from the CMIP6 model ensemble was evaluated to find its corresponding C-C 
change in the CMIP6 models across each year from 2006 to 2100. To account for bias 
in C-C change due to the strong seasonal variation in temperature changes and Bay Area 
storm dynamics in which storms predominantly occur during the colder months, a wet 
season weighting was applied to calculate the annual C-C change. The annual 
wet season weighted C-C change value was found by taking the monthly average 
temperature and the monthly average precipitation, then calculating an average 
weighted by the monthly fraction of the annual precipitation.

The CMIP6 GCMs were used to validate the study findings against the latest science. The 
CMIP6 dataset became available after the initiation of this study, and the integration of 
this dataset helps support the validity of the findings as CMIP6 will become the de-facto 
standard in the years to come. Climate variables necessary for evaluating precipitation 
trends, including precipitation, temperature, and specific humidity were extracted at multiple 
vertical pressure levels. For future condition IDF curve generation, the analysis of CMIP6 
ensemble projections focused on SSP5-8.5. A subset of 18 CMIP6 models were selected 
for analysis, filtered to include only models with a Transient Climate Response (TCR) in the 
‘likely’ (66% likelihood) range reported by AR6. This was done to avoid undue influence of 
overly hot outliers on the model mean (Hausfather et al., 2022). Additional investigation of 
CMIP6 data across all SSPs was performed using the 1850-1900 baseline for pre-industrial 
conditions, for which global temperature projections are published in AR6.

In summary, the evaluation of multiple modeling sources for San Francisco allows for the 
scaling of IDF curves using a hybrid method that draws from the elements of each source 
that best meet the climate data criteria defined in  Table 4.  In aggregate, this robust method 
provides the most confidence in scaling future precipitation events across intensity, 
duration, and frequency dimensions.

IDF Curve Time – WRF and CMIP6
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The first step in developing future condition IDF curves is selecting or developing an IDF 
curve that represents historical conditions. This historical condition IDF curve can then 
be scaled or transformed using future condition scaling factors that are appropriate for 
the location of interest. For this study, the existing NOAA’s Atlas 14 IDF curves for SF 
Downtown (San Francisco Downtown Station #04-7772) published in Atlas 14 Volume 6 
were selected to represent the historical condition IDF curves. Additional NOAA Atlas 14 
IDF curves were selected for SFO and OAK for comparison purposes. 

Combined Analysis Findings

Spotlight on Confidence Intervals 
A confidence interval is a range of values that describes the 

uncertainty surrounding an estimate. We indicate a confidence interval by its  
endpoints; for example, the 90% confidence interval for the number of people, 
of all ages, in poverty in the United States in 1995 (based on the March 1996 
Current Population Survey) is “35,534,124 to 37,315,094.” A confidence interval 
is also itself an estimate. It is made using a model of how sampling, interviewing, 

measuring, and modeling contribute to uncertainty about the relation 
between the true value of the quantity we are estimating and our 

estimate of that value.

Source: https://www.census.gov/programs-surveys/saipe/guidance/confidence-intervals.html

One of the most important findings from this study is that both short-term and long-term 
storm durations are expected to increase in intensity, with short term durations 
increasing faster than longer durations (Table 6 and Table 7). Relative to historical 
storms, by 2050, the 5-year, 24-hour storm could increase an average of ~17% by 2050 
and ~41% by 2100; similarly, the 100-year, 24-hour storm could increase by ~22% by 
2050 and ~51% by 2100. 

In Figure 9, the 5-year, 3-hour storm may increase by ~20% by 2050 and by ~56% by 2100; 
similarly, the 100-year, 3-hour storm could increase by ~26% by 2050 and by ~67% by 
2100. These are substantial increases in projected short- and long-term rain intensities, 
which could have significant impacts on existing city infrastructure. 

Table 6. Historical and Future Return Frequency 
for 24-hour Duration with 90% Confidence 

Table 7. Historical and Future Return Frequency 
for 3-hour Duration with 90% Confidence Interval
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Figure 8. Historical and Future Return Period Verses Rainfall Depth for 24-hour Duration

Figure 9. Changes in rainfall depth (with 90% confidence intervals) for 3-hour duration storm
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Another important takeaway from Figures 8 and 9 is that the 90% confidence 
intervals increase with return period, and the 90% confidence interval for the 
historical NOAA Atlas 14 values is similar to that for the 2050 projections. Often, 
the perception is that projections of future conditions have a larger uncertainty  
range than past events. However, the NOAA Atlas 14 values are derived from statistical 
analysis of historical observations, which also carries a degree of uncertainty. The 90% 
confidence intervals provided in NOAA Atlas 14 are often not used by practitioners; 
therefore, the uncertainty in the NOAA Atlas 14 values is overlooked or not considered in 
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Figure 10. 2050 IDF Curves for Downtown San Francisco (SSP5-8.5)

Table 8. 2050 IDF Curves for Downtown San Francisco (SSP5-8.5)
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Future Condition IDF Curves 
for 2050 and 2100 
San Francisco IDF Curves for 2050 and 2100
Figure 10 and Table 8 present the San Francisco IDF curves for 2050, using the hybrid 
approach applied to the historical NOAA Atlas 14 IDF curves for the SF Downtown Station 
(details in Appendix A). Figure 11 and Table 9 present the San Francisco IDF curves for 
2100. 
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Figure 11. 2100 IDF Curves for Downtown San Francisco (SSP5-8.5)

Table 9. 2100 IDF Curves for Downtown San Francisco (SSP5-8.5)
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Figure 12. 2050 IDF Curves for SFO (SSP5-8.5)

Table 10. 2050 IDF Curves for SFO (SSP5-8.5)
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SFO IDF Curves for 2050 and 2100
Figure 12 and Table 10 present the SFO IDF curves for 2050, using the hybrid approach 
applied to the historical NOAA Atlas 14 IDF curves for the SFO Station (details in Appendix 
A). Figure 13 and Table 11 present the SFO IDF curves for 2100. 
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Figure 13. 2100 IDF Curves for SFO (SSP5-8.5)

Table 11. 2100 IDF Curves for SFO (SSP5-8.5)
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Figure 14. Expected Change in Storm Frequency from Historical Conditions to 2100
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The future condition IDF curves allow for evaluating changes in storm intensity and duration, 
but the standard presentation of IDF curves does not readily highlight the projected changes 
in storm frequency with climate change. 

Figure 14 shows the projected change in storm frequency from historical conditions to 2100. 
Rare storms (based on historical benchmarks) will become increasingly more frequent. In 
San Francisco, a storm delivering the rainfall of a historical 1000-year event (0.01% chance 
of occurring in any given year) may correspond to a 100-year return period (1% chance of 
occurring in any given year) by 2100. Similarly, the historical 100-year event will become  
increasingly more frequent. The historical 100-year event may correspond to a 40-year event 
(2.5% chance of occurring in any given year) by 2050, and the 20-year event (5% chance of 
occurring in any given year) by 2100. Even smaller storms (e.g., the 5-year event) will occur 
more frequently, and become 3-year events by 2050, and 2-year events by 2100. When 
these changes in storm frequency are coupled with projected sea level rise, the potential for  
compound flooding due to high tide flooding and extreme Bay water levels further increases 
(Bevacqua et al., 2020; Fant et al., 2021; Rahimi et al., 2020; Sweet et al., 2018).

Future Condition IDF Curves for 2050 and 2100   | 
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Steps for Scaling IDF Curves and Supporting
Scaling Factors (for 2050 and 2100)
Future condition IDF curves were developed for San Francisco based on the SF Downtown 
station and for SFO based on SFO’s station. However, the percent change factors derived 
in our analysis are applicable to the Bay Area and may be applied to existing IDF curves 
developed for other stations to develop future condition IDF curves for 2050 and 2100. 
These scaling factors can be applied to NOAA Atlas 14 projections for the Bay Area, allowing 
this research to support climate change assessments related to extreme precipitation well 
beyond San Francisco and SFO. At this time, the applicability of the scaling factors outside 
of the Bay Area has not been verified. 

Scaling factor tables, for each return period and storm duration, are provided in Table 12 
and Table 13. In this Guidebook, the full tables with confidence intervals are presented for 
the SF Downtown and SFO stations. The methodology for applying the scaling factors 
to other locations is presented on page 37, and the methodology for scaling the IDF curves 
to other time horizons and climate scenarios is presented on page 38.

   |  Future Condition IDF Curves for 2050 and 2100



Table 12. Percent Change in Precipitation Depth from Historical Atlas 14 to 2050
(Based on CMIP6 C-C Trend for 2050 applied to WRF C-C Scale Factor and SSP5-8.5)

Table 13. Percent Change in Precipitation Depth from Historical Atlas 14 to 2100
(Based on CMIP6 C-C Trend for 2050 applied to WRF C-C Scale Factor and SSP5-8.5) 
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Scaling Factor Tables
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35.2%

25.7-44.7%

34.9%

25.0-44.8%

33.4%

22.7-44.1%

30.3%

20.0-40.6%

29.6%

19.7-39.6%

26.9%

18.8-34.9%

26.5%

21.0-31.9%

25.8%

15.5-36.1%

26.9%

15.4-38.4%

25.7%

16.0-35.4%

75.5%

63.8-87.2%

76.2%

62.1-90.3%

76.7%

60.5-93.0%

75.5%

58.1-93.0%

73.7%

52.8-94.6%

66.6%

45.5-87.7%

60.2%

41.4-79.0%

56.9%

39.9-73.9%

58.4%

44.4-72.3%

58.5%

45.7-71.2%
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Table 14. 2050 IDF Curves for San Francisco (SSP5-8.5) with 90% Confidence Intervals

Table 15. 2100 IDF Curves for San Francisco (SSP5-8.5) with 90% Confidence Intervals

SF Downtown IDF Curves with Confidence Intervals

0.30

0.26-0.35

0.42

0.36-0.48

0.58

0.50-0.67

0.80

0.69-0.93

0.99

0.86-1.15

1.32

1.16-1.51

1.72

1.52-1.96

2.19

1.91-2.53

2.75

2.38-3.19

3.09

2.70-3.56

0.37

0.33-0.43

0.51

0.45-0.59

0.73

0.62-0.85

1.02

0.87-1.19

1.26

1.06-1.49

1.64

1.37-1.94

2.06

1.73-2.43

2.59

2.21-3.03

3.26

2.82-3.77

3.70

3.22-4.26

0.38

0.33-0.44

0.52

0.45-0.60

0.72

0.62-0.84

0.99

0.85-1.14

1.23

1.06-1.41

1.62

1.42-1.87

2.14

1.89-2.44

2.75

2.40-3.19

3.44

2.98-4.00

3.85

3.36-4.45

0.47

0.41-0.54

0.65

0.56-0.75

0.92

0.79-1.07

1.28

1.09-1.49

1.58

1.32-1.85

2.04

1.70-2.42

2.60

2.18-3.07

3.29

2.81-3.86

4.12

3.58-4.78

4.65

4.06-5.38

0.48

0.42-0.56

0.66

0.57-0.76

0.92

0.79-1.07

1.25

1.07-1.44

1.53

1.32-1.78

2.05

1.78-2.36

2.74

2.40-3.13

3.57

3.10-4.13

4.42

3.82-5.15

4.92

4.29-5.68

0.61

0.53-0.70

0.84

0.72-0.97

1.18

1.01-1.38

1.63

1.38-1.90

1.99

1.66-2.36

2.61

2.17-3.10

3.36

2.81-3.97

4.31

3.67-5.06

5.35

4.63-6.22

6.01

5.23-6.96

0.57

0.49-0.66

0.78

0.67-0.91

1.09

0.93-1.27

1.47

1.25-1.71

1.80

1.54-2.11

2.42

2.08-2.80

3.25

2.83-3.75

4.27

3.68-4.98

5.27

4.53-6.17

5.83

5.05-6.79

0.72

0.62-0.84

0.99

0.85-1.16

1.40

1.19-1.65

1.93

1.62-2.27

2.35

1.95-2.82

3.09

2.55-3.70

4.02

3.34-4.78

5.20

4.39-6.13

6.42

5.52-7.51

7.18

6.21-8.37

0.69

0.57-0.84

0.95

0.78-1.15

1.32

1.09-1.60

1.77

1.46-2.15

2.19

1.81-2.65

2.94

2.45-3.55

4.00

3.35-4.82

5.30

4.45-6.35

6.51

5.45-7.83

7.17

6.06-8.58

0.88

0.73-1.07

1.22

1.00-1.48

1.72

1.41-2.10

2.34

1.91-2.87

2.89

2.31-3.55

3.79

3.03-4.68

4.98

4.01-6.14

6.50

5.37-7.87

7.98

6.70-9.59

8.89

7.50-10.65

0.79

0.64-0.98

1.08

0.87-1.35

1.51

1.22-1.88

2.03

1.63-2.51

2.50

2.01-3.10

3.37

2.73-4.17

4.63

3.77-5.71

6.15

5.10-7.51

7.54

6.20-9.22

8.28

6.87-10.08

1.01

0.82-1.26

1.40

1.12-1.74

1.98

1.58-2.46

2.69

2.14-3.37

3.31

2.59-4.16

4.37

3.41-5.51

5.80

4.55-7.28

7.58

6.17-9.34

9.29

7.66-11.35

10.32

8.54-12.56

0.90

0.71-1.15

1.23

0.96-1.57

1.71

1.35-2.19

2.30

1.80-2.93

2.84

2.22-3.63

3.83

3.02-4.88

5.30

4.21-6.74

7.09

5.75-8.84

8.66

6.98-10.81

9.47

7.70-11.78

1.16

0.91-1.47

1.59

1.25-2.04

2.25

1.76-2.89

3.07

2.38-3.94

3.78

2.88-4.88

4.99

3.79-6.46

6.66

5.11-8.61

8.77

7.00-11.02

10.71

8.66-13.37

11.85

9.61-14.74

1.18

0.85-1.63

1.61

1.16-2.22

2.24

1.61-3.11

3.01

2.17-4.17

3.73

2.70-5.16

5.08

3.69-7.02

7.16

5.22-9.87

9.66

7.37-12.80

11.70

8.89-15.51

12.69

9.71-16.83

1.53

1.11-2.11

2.10

1.52-2.91

2.97

2.13-4.13

4.05

2.89-5.63

5.00

3.54-6.97

6.66

4.71-9.32

9.07

6.42-12.64

12.05

9.07-16.07

14.60

11.11-19.34

16.01

12.23-21.24
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Table 16. 2050 IDF Curves for SFO (SSP5-8.5) with 90% Confidence Intervals

Table 17. 2100 IDF Curves for SFO (SSP5-8.5) with 90% Confidence Intervals

SFO IDF Curves with Confidence Intervals

0.27

0.23-0.31

0.37

0.31-0.43

0.51

0.44-0.60

0.73

0.62-0.85

0.90

0.77-1.05

1.24

1.07-1.44

1.61

1.41-1.87

2.11

1.85-2.42

2.70

2.35-3.10

3.07

2.70-3.51

0.33

0.28-0.38

0.45

0.39-0.53

0.65

0.55-0.76

0.93

0.79-1.10

1.14

0.95-1.36

1.54

1.27-1.84

1.94

1.61-2.31

2.50

2.14-2.90

3.19

2.79-3.66

3.67

3.22-4.20

0.33

0.28-0.39

0.45

0.39-0.53

0.64

0.54-0.74

0.90

0.77-1.05

1.11

0.95-1.30

1.53

1.32-1.78

2.00

1.74-2.31

2.61

2.29-3.00

3.36

2.93-3.88

3.86

3.39-4.42

0.41

0.35-0.48

0.57

0.48-0.66

0.81

0.68-0.95

1.16

0.98-1.37

1.43

1.18-1.70

1.92

1.59-2.31

2.43

2.02-2.89

3.13

2.68-3.64

4.02

3.51-4.63

4.67

4.09-5.35

0.42

0.36-0.49

0.57

0.49-0.67

0.80

0.68-0.94

1.14

0.97-1.33

1.41

1.20-1.65

1.93

1.66-2.25

2.54

2.20-2.94

3.32

2.91-3.82

4.29

3.74-4.96

4.94

4.34-5.68

0.53

0.45-0.61

0.72

0.62-0.85

1.03

0.87-1.22

1.49

1.25-1.75

1.83

1.51-2.19

2.46

2.02-2.95

3.12

2.58-3.72

4.02

3.45-4.69

5.19

4.53-5.99

6.04

5.29-6.95

0.49

0.42-0.58

0.67

0.57-0.80

0.95

0.80-1.12

1.34

1.13-1.59

1.65

1.40-1.96

2.28

1.94-2.69

3.00

2.58-3.51

3.94

3.42-4.56

5.09

4.40-5.92

5.87

5.12-6.78

0.62

0.53-0.74

0.86

0.72-1.02

1.22

1.02-1.46

1.77

1.47-2.11

2.16

1.78-2.61

2.93

2.38-3.54

3.71

3.05-4.46

4.80

4.08-5.63

6.20

5.36-7.20

7.22

6.28-8.35

0.60

0.49-0.74

0.82

0.67-1.01

1.15

0.93-1.42

1.63

1.33-2.01

2.03

1.64-2.50

2.80

2.28-3.42

3.67

3.03-4.49

4.82

4.08-5.77

6.23

5.23-7.47

7.18

6.08-8.56

0.77

0.62-0.94

1.05

0.85-1.30

1.50

1.21-1.86

2.16

1.74-2.68

2.68

2.11-3.34

3.61

2.84-4.51

4.58

3.63-5.71

5.92

4.91-7.15

7.64

6.43-9.16

8.91

7.52-10.63

0.69

0.55-0.87

0.94

0.75-1.19

1.32

1.04-1.67

1.88

1.48-2.37

2.33

1.84-2.94

3.21

2.56-4.04

4.23

3.39-5.32

5.56

4.60-6.79

7.17

5.91-8.76

8.25

6.84-10.04

0.88

0.70-1.11

1.21

0.96-1.54

1.73

1.36-2.19

2.50

1.95-3.17

3.08

2.38-3.94

4.17

3.20-5.33

5.30

4.09-6.77

6.86

5.58-8.44

8.84

7.29-10.79

10.27

8.51-12.52

0.78

0.60-1.02

1.07

0.82-1.40

1.50

1.15-1.96

2.14

1.64-2.78

2.65

2.04-3.45

3.67

2.84-4.77

4.83

3.76-6.26

6.36

5.14-7.94

8.18

6.58-10.23

9.39

7.60-11.70

1.01

0.78-1.31

1.39

1.06-1.81

1.97

1.51-2.58

2.85

2.17-3.73

3.53

2.65-4.63

4.78

3.57-6.30

6.07

4.57-7.98

7.87

6.26-9.90

10.12

8.15-12.64

11.74

9.49-14.65

1.04

0.73-1.47

1.42

1.00-2.01

1.99

1.40-2.83

2.83

2.00-4.02

3.53

2.48-4.99

4.90

3.47-6.93

6.47

4.61-9.16

8.50

6.42-11.36

10.85

8.16-14.48

12.39

9.37-16.57

1.34

0.95-1.90

1.85

1.30-2.62

2.63

1.85-3.76

3.81

2.67-5.43

4.72

3.26-6.73

6.43

4.42-9.18

8.20

5.67-11.72

10.61

7.90-14.25

13.54

10.20-18.05

15.63

11.80-20.91
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Developing Future Condition IDF Curves for 
Other Locations

The Scaling Factor Tables (Table 12 and Table 13) were developed to help other communities 
in the Bay Area use the findings from San Francisco’s Extreme Precipitation Study.  
With these factors, any community in the Bay Area can use existing NOAA Atlas 14  
projections to create future condition IDF curves. The factors can be applied to the NOAA 
Atlas 14 projections from the 15-minute to the 3-day duration, and from the 1-year to the 
500-year return periods. Alternatively, the scaling factors can be applied to select design
or level of service storms of interest within this range.

Step-by-step Process to Scale Historical 
IDF to Future Condition IDF Projection

Access the NOAA Atlas 14 Point Precipitation Frequency estimates 
by going to the NOAA National Weather Service Hydrometeorological Design 

Studies Center site:
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ca

Select by entering an address or selecting a station. In this example,
we selected, “Oakland Museum.”  

Either download the entire table or select your storm of interest.
For this example, we selected the 5-yr, 3-hr storm.

Take NOAA Atlas 14 estimate of rainfall depth (in inches)
and multiply by the scaling factor from Table 12 or 13.

Source: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ca

Figure 15. Example NOAA Atlas 14 Web Interface and Tabular Existing IDF Curve
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Table 18. Crosswalk for Translating from SSP5-8.5 to other Scenarios based on Degree of Warming

Developing Future Conditions IDF Curves for other Time
Horizons and Climate Scenarios

The future condition IDF Curves were developed for the 2050 and 2100 time horizon, assuming 
an SSP5-8.5 climate future, which is the highest greenhouse gas emissions scenario considered 
by IPCC (IPCC, 2021). However, the findings can be scaled to other time horizons or climate 
scenarios, such as SSP4-7.0, SSP2-7.0, and SSP2-4.5, if required for risk-based decision making 
or sensitivity analysis. 

To facilitate this scaling, IDF curve percent change scale factors are provided under SSP5-8.5 in 
5-year intervals from 2020 to 2100 in Appendix B. These values were derived from applying an 
interpolated C-C ratio to the estimated CMIP6 C-C change for the given years. C-C ratios were 
interpolated between the WRF and LOCA results between 2050 and 2100 and an assumed C-C 
ratio of 1 at 2005, the beginning of the analysis period.

Scale factors for given years along SSP5-8.5 can be equated to global warming targets as 
published by the IPCC’s AR6 Report (IPCC, 2021). These global warming values can be in turn 
matched with the corresponding year that level of warming would occur along another IPCC 
climate scenario of interest. Table 18 provides a synthesis of these results, showing the target 
temperature values associated with SSP2-4.5, the other most common IPCC climate scenario 
used by San Francisco agencies, and SSP3-7.0, an intermediate climate scenario. However,  
this same approach can transform the results to other IPCC climate scenarios if needed.  
Figure 16 presents this same information in a graphical form.

2020
2027
2028
2030
2040
2042
2044
2050
2056
2058
2064
2068
2080
2082
2084
2099

1.25
1.48
1.51
1.58
1.93
2.01
2.09
2.35
2.62
2.71
2.99
3.18
3.78
3.89
3.99
4.73

2021.3
2029.5
2030.7
2033.1
2044.8
2047.2
2049.8
2057.4
2064.9
2067.5
2075.0
2080.0
2095.7
2098.4

2020.9
2029.7
2031.1
2034.2
2049.5
2052.7
2056.5
2069.9
2087.4
2095.2
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Figure 16. Alternative Approach for Scaling IDF Change Factors based on Temperature Change
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For example, if a practitioner is interested in how extreme precipitation or a design storm may 
change with 3°C in warming, the temperature change Figure 16b and in Table 12 highlight that 
this degree of warming occurs at about 2064 for SSP5-8.5. Using the tables in Appendix B, a 
practitioner can estimate the percent increase in precipitation at 2064, which would match 
their 3°C warming target. From Figure 16a, we can see that a practitioner interested in results 
for 2075 under SSP3-7.0 would similarly find that the year 2064 for SSP5-8.5 best matches this 
target. 
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Other Climate 
Variables
When evaluating changing climate conditions and the potential for flooding, it is useful 
to consider more than one climate variable of interest. Compound flooding, or flooding 
that occurs due to multiple sources, such as storm surge and sea level rise, groundwater 
rise, and precipitation, is becoming more common (Bevacqua et al., 2020; Rahimi et al., 
2020; Sweet et al., 2018). Therefore, for instance, when evaluating flooding associated 
with an extreme precipitation event in 2050, the corresponding amount of sea level rise 
and storm surge should be considered. 

In this section, we discuss how to consider or pair the future condition IDF curves with 
other climate variables. 

Back-to-Back Events

In December 2022 to January 2023, the Bay Area experienced nine back-to-back events 
consisting of both an AR family (Fish et al., 2022) and a series of ETCs (Dacre & Pinto, 2020). 
The low-pressure conditions associated with the ETCs resulted in elevated Bay water levels 
(Figure 17). And the combination of ARs and ETCs created bomb cyclone conditions on 
January 5, 2023 (characterized by a rapid pressure drop) that elevated Bay water levels and 
brought heavy rainfall, high winds, and damaging waves along the open Pacific coast. 

While the recent series of storms may seem unusual, the Bay Area has long experienced 
successive storms, or storms that occur one after the other in a series over multiple days to 
weeks (May et al., 2016). For example, a series of storms between December 18 and 27, 1955, 
February 11 and 21, 1986, and March 9 to 16, 2016 all coupled higher than average Bay water 
levels with heavy precipitation, resulting in flooding in low-lying areas across the Bay Area (May 
et al., 2016). The December 2014 storms selected for modeling as part of this study included 
a long series of storms, requiring the simulation period to be split into two and modeled as two 
separate events. 

In the past, the storm events that caused the most flooding across the Bay Area occurred 
during El Niño years when Bay water levels could be elevated by a foot more even in the 
absence of low-pressure driven storm surge. The elevated Bay water levels impact stormwater 
drainage to the Bay and exacerbate inland flooding. However, due to accelerating sea level 
rise, recent storm events occurring during La Niña years are causing Bay Area flooding that 
rivals the historic El Niño storm events. The December 2022 to January 2023 series of storms 
occurred during a La Niña year. 



Figure 17. Total rainfall accumulation over the storm series at the SF Downtown Station,
Barometric pressure, Observed and Predicted water levels at the Presidio Tide Gauge

Recent research has shown that successive ARs, known as AR families, can result in 
prolonged flooding and impacts with little recovery time between events (Fish et al., 2022). 
AR families that occur in La Niña years are associated with higher average precipitation 
across California. AR families that occur during El Niño years are characterized by lower 
precipitation intensities; however, the AR families persist for longer durations and could 
achieve similar storm totals (Fish et al., 2022). AR events are also notable as they bring 
the majority of California’s precipitation in only 10 to 100 hours per year, and a single 
storm event can bring up to 30% of a specific location’s annual precipitation (Lamjiri et 
al., 2018). These characteristics were evident in the recent Bay Area storms, with 18 
inches of rain recorded at the SF Downtown rain gage, across the 9 storms, and with 
much of the precipitation falling during one storm event (Figure 17). Combined, over 
75% of San Francisco’s average rainfall fell over a relatively short duration. 
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Figure 18. Change in Surface Pressure for the Modeled Storms

In San Francisco Bay and the Pacific Ocean offshore of San Francisco, elevated water levels 
associated with storm surge is driven by low atmospheric pressure. The maximum storm surge 
associated with low atmospheric pressure is about 10 to 12 inches. The WRF simulations did 
not reveal any significant changes atmospheric pressure across the modeled storms (Figure 18). 
However, the WRF simulations were optimized to assess changes in precipitation; therefore, 
the lack of a change in atmospheric pressure across the six storms evaluated is insufficient to 
rule out a potential increase in pressure drop with similar storm events in the future. Explosive 
cyclogenesis is driven by a rapid drop in pressure within the ETC, and this rapid pressure drop 

Changes in Storm Surge
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is required to 
classify the storm 
as a bomb cyclone. 
It is possible  
pressure drops 
that exceed 
historic conditions 
could occur in the 
future. 

Many other 
processes are 
associated with 
elevated Bay 
water levels, such 
as El Niño 
conditions, which 
can elevate coastal 
water levels by 12 
inches or more 
(USGS, 1999). 
El Niño can also 
bring extreme 
weather conditions 
and heavy 
precipitation 
(Barnard et al., 
2015; DeFlorio et 
al., 2013; Goddard 
& Gershunov, 2020; 
Griggs, 1998). On 
the West Coast, it 
is challenging to 
relate an increase 
in Bay water levels 
above predicted 
tides to one factor, 
such as changes 
in atmospheric 
pressure.



Figure 19. Windspeeds (< 16 km) Trends for the Modeled Storms

Changes in Storm Surge

The windspeeds within the WRF simulations were evaluated to assess if increasing 
windspeeds occurred in response to the warming climate. Increased windspeeds could 
drive local wind-wave generation and wave runup along the shoreline, and high windspeeds 
can impact SFO and Port operations. However, there are no observable changes in 
windspeeds across the simulations. Slight changes are evident above 10 km (Figure 
19), the mean height associated with moisture transport. However, near the ground, no  
discernable changes in windspeeds are evident (Figure 20). Although there is no evidence 
of changes in extreme windspeeds across the simulations, changes in windspeeds to 
climate change cannot be definitively ruled out. It is possible the windspeeds that exceed 
historic conditions could occur in the future with AR and ETC events. 
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Figure 20. Near Ground (< 2 km) Windspeed Trends for Modeled Storms
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Closing
Thoughts
The Bay Area has experienced flooding from numerous extreme storm events that 
delivered heavy precipitation and other severe storm conditions (e.g., high winds and 
storm surge). However, San Francisco has not experienced devastating or catastrophic 
flooding and the associated consequences that have impacted so many other cities 
around the U.S. and the world. 

Over ~18 inches of rain were recorded at the San Francisco Downtown rain gage 
between December 26, 2022 to January 16, 2023. In a mere 21 days, the storms 
produced more than 75% of San Francisco’s annual average rainfall amount. 
Historically, San Francisco’s receives about 23 inches of rainfall with 68 days per year of 
measurable rain. As our climate continues to warm, San Francisco’s average annual 
rainfall may not change significantly, although more rain will fall across shorter 
durations, leading to fewer and fewer days with  measurable rainfall. San Francisco will 
continue to experience a climate that oscillates  between prolonged periods of 
drought with below average annual precipitation, and  extreme wet years with annual 
precipitation well above average conditions.

In the Bay Area, storms will continue to increase in intensity and severity irrespective 
of the future emissions trajectory. The findings from this Extreme Precipitation Study, 
both  Volume 1 and Volume 2, provide scientific analysis that helps various 
stakeholders and interested parties understand how large storms might change under a 
warming climate, which can facilitate preparation for future extreme precipitation.
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Appendix A
Steps for Scaling IDF Curves and Supporting 
Scaling Factors (for 2050 and 2100)  
The following summarizes the methodology used to transform the WRF, LOCA, and 
CMIP6 ensemble climate models to derive the future conditions IDF curves for 2050 and 
2100. 

WRF (AR+ETC) 2050 and 2100 C-C ratios: Use WRF simulations to derive 
Clausius- Clapeyron ratios for individual temporal durations. Apply the AR+ETC storm 
weighting adjustment factor, then calculate the C-C ratios for each temporal 
duration (15-min through 24-hour) for 2050 and 2100. This partially provides the IDF 
scaling along the duration dimension. 

WRF (AR+ETC) historical return period: Estimate the average return period of 
the historical AR+ETC storms modeled in WRF (resulting in an average return period 
of 2 years across multiple durations). 

WRF-LOCA C-C scale factors (normalized percent change): Using the percent 
change factors for each return period (1-year through 500-year) calculated using 
the LOCA ensemble, normalize the percent change factors to the estimated return 
period of the combined AR+ETC storm events modeled in WRF. This returns 
adjustment factors to scale the C-C ratios for each temporal duration from the 
estimated return period of the combined AR+ETC storms to other return periods (1-, 
2-, 5-, 10-, 25-, 50-, 100-, and 500-year). This partially provides the IDF scaling along 
the frequency dimension. 

CMIP6 2050 and 2100 C-C percent change: Using the historical to future 
percent change factors for the C-C ratios obtained from the CMIP6 models, apply 
the percent change factors to the WRF-LOCA scaled C-C ratios for 2050 and 2100. 

CMIP6 C-C change factor for 2050 = 1.15 (+15.3%) 
CMIP6 C-C change factor for 2100 = 1.40 (+39.7%)

This results in the percent change factors to apply to the NOAA Atlas 14 
precipitation depths for all temporal durations and return periods.
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Appendix B
The following tables provide estimated percent change scaling factors for 
converting  historical Atlas 14 IDF curves to the given year along SSP5-8.5. Values have 
been calculated by interpolating WRF-LOCA C-C scale factors to the given year and then 
apply those to the corresponding CMIP6 C-C percent change for the given year. Tables of 
the final estimated percent change are provided for every 5 years between 2020 and 2100, a 
high enough frequency that further interpolation of these tables to intermediate years should 
be reasonable.

Table B1. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2020 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2020 applied to interpolated WRF C-C Scale Factor)
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Table B2. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2025 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2025 applied to interpolated WRF C-C Scale Factor)

Table B3. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2030 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2030 applied to interpolated WRF C-C Scale Factor)

10.8%

7.2-14.4%

10.7%

7.0-14.4%

10.1%

6.1-14.2%

9.0%

5.1-12.9%

8.7%

5.0-12.5%

7.7%

4.6-10.7%

7.5%

5.4-9.6%

7.3%

3.4-11.1%

7.7%

3.3-12.0%

7.2%

3.6-10.9%

13.3%

8.8-17.9%

13.2%

8.4-17.9%

12.4%

7.3-17.6%

11.0%

6.0-15.9%

10.7%

5.9-15.4%

9.3%

5.5-13.2%

9.1%

6.5-11.7%

8.8%

3.9-13.7%

9.3%

3.8-14.9%

8.7%

4.1-13.4%

11.3%

7.6-14.9%

11.1%

7.4-14.9%

10.6%

6.5-14.6%

9.4%

5.5-13.3%

9.1%

5.4-12.9%

8.1%

5.0-11.2%

7.9%

5.8-10.0%

7.7%

3.7-11.6%

8.1%

3.7-12.5%

7.6%

3.9-11.3%

13.9%

9.3-18.5%

13.7%

8.9-18.5%

13.0%

7.8-18.1%

11.5%

6.5-16.5%

11.2%

6.4-16.0%

9.8%

6.0-13.7%

9.6%

7.0-12.3%

9.3%

4.3-14.3%

9.9%

4.3-15.4%

9.3%

4.6-13.9%

11.8%

8.2-15.5%

11.7%

7.9-15.5%

11.1%

7.0-15.2%

9.9%

6.0-13.9%

9.7%

5.9-13.5%

8.6%

5.5-11.7%

8.5%

6.3-10.6%

8.2%

4.2-12.2%

8.6%

4.2-13.1%

8.1%

4.4-11.9%

14.6%

10.0-19.3%

14.4%

9.6-19.3%

13.7%

8.5-18.9%

12.2%

7.1-17.2%

11.9%

7.0-16.7%

10.5%

6.6-14.5%

10.3%

7.6-13.0%

10.0%

5.0-15.0%

10.5%

4.9-16.2%

9.9%

5.2-14.7%

12.3%

8.6-16.0%

12.2%

8.3-16.0%

11.6%

7.4-15.7%

10.4%

6.4-14.4%

10.1%

6.3-14.0%

9.0%

5.9-12.2%

8.9%

6.8-11.0%

8.6%

4.6-12.6%

9.1%

4.6-13.5%

8.6%

4.8-12.3%

15.2%

10.5-19.9%

15.0%

10.1-19.9%

14.3%

9.0-19.5%

12.7%

7.7-17.8%

12.4%

7.5-17.3%

11.1%

7.1-15.0%

10.9%

8.2-13.5%

10.5%

5.4-15.6%

11.1%

5.4-16.8%

10.5%

5.7-15.2%

13.0%

9.2-16.7%

12.8%

8.9-16.7%

12.2%

8.0-16.4%

11.0%

7.0-15.1%

10.8%

6.8-14.7%

9.7%

6.5-12.8%

9.5%

7.4-11.6%

9.2%

5.2-13.3%

9.7%

5.2-14.2%

9.2%

5.4-13.0%

16.0%

11.3-20.8%

15.9%

10.9-20.8%

15.1%

9.8-20.4%

13.6%

8.4-18.7%

13.2%

8.3-18.2%

11.9%

7.8-15.9%

11.6%

8.9-14.4%

11.3%

6.2-16.4%

11.9%

6.1-17.6%

11.2%

6.4-16.1%

13.5%

9.7-17.3%

13.4%

9.4-17.3%

12.8%

8.5-17.0%

11.5%

7.4-15.6%

11.3%

7.3-15.2%

10.2%

7.0-13.4%

10.0%

7.9-12.2%

9.8%

5.7-13.8%

10.2%

5.6-14.8%

9.7%

5.9-13.6%

16.7%

11.9-21.5%

16.6%

11.6-21.6%

15.8%

10.4-21.2%

14.2%

9.0-19.4%

13.9%

8.9-18.9%

12.5%

8.5-16.6%

12.3%

9.6-15.1%

12.0%

6.8-17.2%

12.5%

6.7-18.3%

11.9%

7.0-16.8%

14.1%

10.3-18.0%

14.0%

10.0-18.0%

13.4%

9.1-17.7%

12.1%

8.0-16.3%

11.9%

7.9-15.9%

10.8%

7.5-14.0%

10.6%

8.4-12.8%

10.3%

6.2-14.5%

10.8%

6.2-15.4%

10.3%

6.4-14.2%

17.5%

12.7-22.4%

17.3%

12.3-22.4%

16.6%

11.1-22.0%

15.0%

9.7-20.2%

14.7%

9.6-19.7%

13.3%

9.1-17.4%

13.0%

10.2-15.8%

12.7%

7.4-17.9%

13.3%

7.4-19.1%

12.6%

7.7-17.6%

15.8%

11.9-19.7%

15.6%

11.5-19.7%

15.0%

10.6-19.4%

13.7%

9.5-18.0%

13.5%

9.4-17.6%

12.3%

9.0-15.7%

12.1%

9.9-14.4%

11.9%

7.6-16.1%

12.3%

7.6-17.1%

11.8%

7.8-15.8%

19.6%

14.6-24.6%

19.4%

14.2-24.6%

18.6%

13.0-24.3%

17.0%

11.6-22.4%

16.7%

11.5-21.9%

15.2%

11.0-19.5%

15.0%

12.1-17.9%

14.6%

9.2-20.1%

15.2%

9.2-21.3%

14.6%

9.5-19.7%
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Table B4. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2035 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2035 applied to interpolated WRF C-C Scale Factor)

Table B5. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2040 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2040 applied to interpolated WRF C-C Scale Factor)

15.5%

10.0-21.1%

15.3%

9.6-21.1%

14.4%

8.2-20.7%

12.7%

6.7-18.7%

12.3%

6.5-18.1%

10.7%

6.0-15.4%

10.4%

7.2-13.6%

10.0%

4.0-16.0%

10.7%

4.0-17.4%

10.0%

4.3-15.6%

17.7%

11.1-24.2%

17.4%

10.6-24.2%

16.4%

9.0-23.7%

14.3%

7.2-21.3%

13.8%

7.0-20.6%

11.9%

6.4-17.4%

11.6%

7.9-15.4%

11.2%

4.1-18.2%

11.9%

4.0-19.8%

11.1%

4.4-17.7%

16.2%

10.6-21.8%

16.0%

10.2-21.8%

15.1%

8.8-21.4%

13.3%

7.2-19.4%

12.9%

7.1-18.8%

11.3%

6.6-16.0%

11.0%

7.8-14.3%

10.7%

4.6-16.7%

11.3%

4.6-18.1%

10.6%

4.9-16.3%

18.4%

11.9-25.0%

18.2%

11.4-25.1%

17.1%

9.7-24.6%

15.0%

7.9-22.2%

14.6%

7.7-21.4%

12.7%

7.1-18.2%

12.4%

8.6-16.1%

11.9%

4.8-19.0%

12.7%

4.7-20.7%

11.8%

5.1-18.5%

17.1%

11.4-22.7%

16.9%

11.0-22.7%

16.0%

9.6-22.3%

14.1%

8.0-20.3%

13.8%

7.9-19.7%

12.1%

7.3-16.9%

11.9%

8.6-15.1%

11.5%

5.4-17.6%

12.1%

5.3-19.0%

11.4%

5.7-17.1%

19.5%

12.8-26.1%

19.2%

12.3-26.2%

18.2%

10.7-25.7%

16.0%

8.8-23.2%

15.6%

8.6-22.5%

13.6%

8.0-19.3%

13.3%

9.5-17.1%

12.9%

5.7-20.1%

13.7%

5.6-21.7%

12.8%

6.0-19.6%

17.8%

12.1-23.5%

17.6%

11.7-23.5%

16.7%

10.3-23.1%

14.8%

8.7-21.0%

14.4%

8.5-20.4%

12.8%

8.0-17.6%

12.5%

9.3-15.8%

12.1%

6.0-18.3%

12.8%

5.9-19.7%

12.1%

6.3-17.9%

20.3%

13.6-27.0%

20.1%

13.1-27.1%

19.0%

11.4-26.5%

16.8%

9.5-24.1%

16.4%

9.3-23.4%

14.4%

8.7-20.1%

14.1%

10.3-18.0%

13.6%

6.4-20.9%

14.4%

6.3-22.6%

13.6%

6.7-20.4%

18.8%

13.1-24.6%

18.6%

12.6-24.6%

17.7%

11.2-24.2%

15.8%

9.6-22.1%

15.4%

9.4-21.4%

13.7%

8.9-18.6%

13.5%

10.2-16.8%

13.1%

6.8-19.3%

13.8%

6.8-20.7%

13.0%

7.1-18.9%

21.5%

14.7-28.3%

21.3%

14.2-28.3%

20.2%

12.5-27.8%

18.0%

10.6-25.3%

17.5%

10.4-24.6%

15.5%

9.8-21.3%

15.2%

11.3-19.1%

14.8%

7.4-22.1%

15.6%

7.3-23.8%

14.7%

7.7-21.6%

19.7%

13.8-25.5%

19.5%

13.4-25.5%

18.5%

12.0-25.1%

16.6%

10.3-23.0%

16.2%

10.2-22.3%

14.6%

9.6-19.5%

14.3%

10.9-17.6%

13.9%

7.6-20.2%

14.6%

7.5-21.6%

13.8%

7.9-19.7%

22.5%

15.7-29.4%

22.3%

15.1-29.4%

21.2%

13.5-28.9%

19.0%

11.5-26.4%

18.5%

11.3-25.7%

16.5%

10.7-22.3%

16.2%

12.2-20.1%

15.7%

8.3-23.1%

16.5%

8.2-24.8%

15.6%

8.6-22.6%

20.6%

14.7-26.5%

20.4%

14.3-26.5%

19.5%

12.8-26.1%

17.5%

11.2-23.9%

17.1%

11.0-23.3%

15.4%

10.4-20.4%

15.2%

11.8-18.6%

14.8%

8.4-21.1%

15.5%

8.3-22.6%

14.7%

8.7-20.7%

23.6%

16.7-30.6%

23.4%

16.2-30.6%

22.3%

14.5-30.1%

20.0%

12.5-27.6%

19.6%

12.3-26.8%

17.5%

11.7-23.4%

17.2%

13.2-21.2%

16.7%

9.2-24.3%

17.6%

9.2-26.0%

16.6%

9.6-23.7%

23.2%

17.1-29.2%

22.9%

16.6-29.3%

22.0%

15.2-28.8%

20.0%

13.4-26.6%

19.6%

13.3-25.9%

17.8%

12.7-23.0%

17.6%

14.1-21.0%

17.1%

10.6-23.7%

17.9%

10.5-25.2%

17.1%

10.9-23.2%

26.7%

19.5-33.8%

26.4%

18.9-33.9%

25.3%

17.2-33.3%

22.9%

15.2-30.7%

22.5%

15.0-29.9%

20.4%

14.3-26.4%

20.0%

15.9-24.2%

19.5%

11.8-27.3%

20.4%

11.7-29.1%

19.5%

12.2-26.7%
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Table B6. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2045 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2045 applied to interpolated WRF C-C Scale Factor)

Table B7. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2050 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2050 applied to interpolated WRF C-C Scale Factor)

20.6%

13.0-28.2%

20.4%

12.4-28.3%

19.1%

10.6-27.7%

16.7%

8.4-24.9%

16.2%

8.2-24.1%

14.0%

7.5-20.4%

13.6%

9.3-18.0%

13.1%

4.9-21.3%

14.0%

4.8-23.2%

13.0%

5.3-20.7%

23.3%

14.6-31.9%

23.0%

13.9-32.0%

21.6%

11.8-31.3%

18.8%

9.4-28.2%

18.2%

9.1-27.2%

15.7%

8.3-23.0%

15.3%

10.3-20.2%

14.7%

5.3-24.0%

15.7%

5.2-26.2%

14.6%

5.7-23.4%

21.6%

13.9-29.2%

21.3%

13.3-29.2%

20.0%

11.4-28.7%

17.6%

9.3-25.9%

17.0%

9.0-25.0%

14.8%

8.3-21.3%

14.5%

10.1-18.9%

13.9%

5.6-22.2%

14.9%

5.6-24.1%

13.8%

6.0-21.6%

24.3%

15.6-33.1%

24.0%

14.9-33.1%

22.6%

12.8-32.4%

19.8%

10.3-29.3%

19.2%

10.1-28.3%

16.6%

9.2-24.0%

16.2%

11.2-21.3%

15.6%

6.2-25.1%

16.7%

6.1-27.3%

15.5%

6.6-24.4%

22.8%

15.0-30.5%

22.5%

14.4-30.5%

21.2%

12.5-29.9%

18.7%

10.3-27.1%

18.2%

10.1-26.3%

16.0%

9.4-22.5%

15.6%

11.2-20.0%

15.1%

6.7-23.4%

16.0%

6.6-25.4%

15.0%

7.1-22.8%

25.7%

16.9-34.5%

25.4%

16.2-34.6%

24.0%

14.0-33.9%

21.1%

11.5-30.7%

20.5%

11.3-29.7%

17.9%

10.5-25.4%

17.5%

12.5-22.6%

16.9%

7.3-26.5%

18.0%

7.3-28.7%

16.8%

7.8-25.8%

23.7%

15.9-31.5%

23.4%

15.3-31.6%

22.2%

13.4-31.0%

19.7%

11.2-28.1%

19.1%

11.0-27.3%

16.9%

10.2-23.5%

16.5%

12.0-21.0%

16.0%

7.5-24.4%

16.9%

7.4-26.3%

15.9%

7.9-23.8%

26.8%

17.9-35.7%

26.5%

17.2-35.8%

25.0%

15.0-35.1%

22.2%

12.5-31.8%

21.6%

12.2-30.9%

19.0%

11.4-26.5%

18.6%

13.4-23.7%

17.9%

8.3-27.6%

19.0%

8.2-29.8%

17.8%

8.7-26.9%

25.1%

17.2-33.0%

24.8%

16.6-33.1%

23.6%

14.7-32.5%

21.0%

12.4-29.6%

20.5%

12.2-28.7%

18.2%

11.5-24.9%

17.8%

13.3-22.4%

17.3%

8.7-25.8%

18.2%

8.6-27.8%

17.2%

9.1-25.2%

28.4%

19.4-37.4%

28.1%

18.7-37.5%

26.6%

16.5-36.8%

23.7%

13.9-33.5%

23.1%

13.7-32.5%

20.5%

12.8-28.1%

20.1%

14.9-25.2%

19.4%

9.7-29.2%

20.5%

9.6-31.4%

19.3%

10.1-28.5%

26.3%

18.3-34.3%

26.0%

17.7-34.3%

24.7%

15.7-33.7%

22.1%

13.5-30.8%

21.6%

13.3-30.0%

19.3%

12.5-26.1%

18.9%

14.3-23.5%

18.4%

9.7-27.0%

19.3%

9.6-29.0%

18.3%

10.1-26.4%

29.8%

20.6-38.9%

29.4%

19.9-38.9%

28.0%

17.7-38.2%

25.0%

15.1-34.9%

24.4%

14.9-33.9%

21.7%

14.0-29.5%

21.3%

16.1-26.6%

20.7%

10.8-30.6%

21.8%

10.7-32.8%

20.6%

11.3-29.9%

27.6%

19.5-35.7%

27.3%

18.9-35.7%

26.0%

16.9-35.1%

23.4%

14.6-32.2%

22.8%

14.4-31.3%

20.5%

13.7-27.3%

20.1%

15.5-24.8%

19.6%

10.8-28.3%

20.5%

10.7-30.3%

19.5%

11.2-27.7%

31.2%

22.0-40.5%

30.9%

21.3-40.5%

29.4%

19.0-39.8%

26.4%

16.4-36.4%

25.8%

16.2-35.4%

23.1%

15.3-30.9%

22.7%

17.4-28.0%

22.1%

12.1-32.0%

23.2%

12.0-34.3%

21.9%

12.5-31.3%

31.1%

22.8-39.4%

30.8%

22.1-39.5%

29.5%

20.1-38.8%

26.8%

17.7-35.8%

26.2%

17.5-34.9%

23.8%

16.7-30.8%

23.4%

18.6-28.2%

22.8%

13.8-31.8%

23.8%

13.7-33.9%

22.7%

14.2-31.2%

35.2%

25.7-44.7%

34.9%

25.0-44.8%

33.4%

22.7-44.1%

30.3%

20.0-40.6%

29.6%

19.7-39.6%

26.9%

18.8-34.9%

26.5%

21.0-31.9%

25.8%

15.5-36.1%

26.9%

15.4-38.4%

25.7%

16.0-35.4%
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Table B8. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2055 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2055 applied to interpolated WRF C-C Scale Factor)

Table B9. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2060 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2060 applied to interpolated WRF C-C Scale Factor)

25.3%

16.5-34.1%

25.1%

15.8-34.3%

23.8%

13.8-33.9%

21.2%

11.3-31.0%

20.5%

10.7-30.3%

17.7%

9.5-25.9%

16.9%

11.0-22.8%

16.1%

6.3-25.9%

17.1%

6.5-27.7%

16.1%

7.1-25.1%

28.0%

19.1-36.9%

27.8%

18.3-37.4%

26.8%

16.3-37.2%

24.3%

13.9-34.6%

23.5%

12.9-34.1%

20.4%

11.2-29.6%

19.1%

12.2-26.0%

18.1%

7.8-28.4%

19.2%

8.4-29.9%

18.2%

9.1-27.4%

26.5%

17.7-35.4%

26.3%

16.9-35.6%

25.0%

14.9-35.2%

22.4%

12.4-32.3%

21.7%

11.8-31.6%

18.8%

10.5-27.2%

18.0%

12.0-24.0%

17.2%

7.3-27.1%

18.3%

7.6-29.0%

17.2%

8.1-26.3%

29.4%

20.4-38.4%

29.2%

19.5-38.9%

28.1%

17.5-38.7%

25.6%

15.1-36.1%

24.8%

14.1-35.5%

21.7%

12.4-31.0%

20.4%

13.4-27.4%

19.4%

9.0-29.8%

20.4%

9.6-31.3%

19.5%

10.2-28.8%

28.1%

19.1-37.0%

27.8%

18.3-37.3%

26.6%

16.3-36.9%

23.9%

13.8-33.9%

23.2%

13.2-33.2%

20.3%

11.9-28.7%

19.4%

13.4-25.5%

18.6%

8.6-28.6%

19.7%

8.9-30.5%

18.6%

9.5-27.8%

31.1%

22.0-40.2%

30.9%

21.1-40.7%

29.8%

19.1-40.6%

27.3%

16.7-37.9%

26.5%

15.6-37.4%

23.3%

13.8-32.7%

22.0%

14.9-29.1%

21.0%

10.4-31.5%

22.0%

11.0-33.0%

21.1%

11.7-30.5%

29.3%

20.2-38.3%

29.0%

19.5-38.6%

27.8%

17.4-38.2%

25.0%

14.9-35.2%

24.3%

14.2-34.5%

21.4%

12.9-29.9%

20.6%

14.5-26.7%

19.7%

9.6-29.9%

20.8%

9.9-31.8%

19.8%

10.5-29.0%

32.4%

23.2-41.6%

32.3%

22.4-42.2%

31.2%

20.3-42.0%

28.6%

17.9-39.3%

27.8%

16.8-38.8%

24.5%

15.0-34.1%

23.2%

16.0-30.4%

22.2%

11.5-32.8%

23.3%

12.2-34.4%

22.3%

12.8-31.8%

31.0%

21.8-40.2%

30.8%

21.1-40.4%

29.5%

18.9-40.0%

26.7%

16.4-37.0%

26.0%

15.8-36.3%

23.1%

14.4-31.7%

22.2%

16.0-28.4%

21.3%

11.1-31.6%

22.4%

11.4-33.5%

21.4%

12.0-30.8%

34.3%

25.0-43.6%

34.1%

24.1-44.2%

33.0%

22.0-44.0%

30.4%

19.5-41.3%

29.6%

18.5-40.8%

26.3%

16.6-36.0%

24.9%

17.7-32.2%

23.9%

13.1-34.7%

25.0%

13.8-36.3%

24.1%

14.4-33.7%

32.4%

23.2-41.7%

32.2%

22.4-42.0%

30.9%

20.2-41.6%

28.1%

17.7-38.5%

27.4%

17.0-37.8%

24.4%

15.7-33.1%

23.5%

17.3-29.8%

22.7%

12.3-33.0%

23.8%

12.6-35.0%

22.7%

13.2-32.2%

35.8%

26.4-45.3%

35.7%

25.5-45.8%

34.6%

23.4-45.7%

31.9%

20.9-42.9%

31.1%

19.8-42.4%

27.8%

17.9-37.6%

26.4%

19.0-33.8%

25.3%

14.4-36.2%

26.5%

15.1-37.8%

25.5%

15.7-35.2%

34.0%

24.6-43.4%

33.8%

23.8-43.7%

32.5%

21.7-43.2%

29.6%

19.1-40.2%

28.9%

18.4-39.4%

25.9%

17.0-34.7%

25.0%

18.6-31.3%

24.1%

13.6-34.6%

25.3%

13.9-36.6%

24.2%

14.5-33.8%

37.5%

27.9-47.1%

37.3%

27.1-47.6%

36.2%

24.9-47.5%

33.5%

22.4-44.7%

32.7%

21.3-44.1%

29.3%

19.4-39.3%

27.9%

20.4-35.4%

26.8%

15.8-37.9%

28.0%

16.5-39.5%

27.0%

17.1-36.9%

38.2%

28.6-47.9%

38.0%

27.7-48.2%

36.6%

25.5-47.7%

33.7%

22.8-44.6%

33.0%

22.1-43.8%

29.8%

20.7-39.0%

28.9%

22.4-35.5%

28.0%

17.2-38.9%

29.2%

17.5-40.9%

28.1%

18.1-38.0%

42.0%

32.1-51.8%

41.8%

31.2-52.4%

40.6%

29.0-52.2%

37.9%

26.3-49.4%

37.0%

25.2-48.8%

33.5%

23.2-43.8%

32.1%

24.3-39.8%

30.9%

19.5-42.4%

32.1%

20.2-44.0%

31.1%

20.9-41.3%
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Table B10. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2065 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2065 applied to interpolated WRF C-C Scale Factor)

Table B11. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2070 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2070 applied to interpolated WRF C-C Scale Factor)

30.0%

21.0-39.0%

30.0%

20.2-39.8%

29.1%

18.3-39.9%

26.7%

15.9-37.6%

25.9%

14.5-37.2%

22.4%

12.3-32.6%

20.7%

12.8-28.6%

19.5%

8.8-30.2%

20.6%

9.8-31.4%

19.8%

10.4-29.2%

32.2%

23.1-41.3%

32.2%

22.2-42.3%

31.5%

20.3-42.7%

29.3%

18.0-40.6%

28.4%

16.2-40.5%

24.6%

13.5-35.7%

22.4%

13.5-31.3%

21.0%

9.9-32.2%

22.1%

11.2-33.1%

21.4%

11.9-31.0%

31.6%

22.5-40.7%

31.5%

21.6-41.4%

30.6%

19.7-41.6%

28.3%

17.3-39.2%

27.4%

15.9-38.9%

23.9%

13.6-34.2%

22.1%

14.1-30.1%

20.9%

10.1-31.8%

22.0%

11.1-33.0%

21.2%

11.8-30.7%

33.9%

24.7-43.2%

34.0%

23.8-44.1%

33.2%

21.9-44.5%

31.0%

19.6-42.5%

30.1%

17.8-42.4%

26.3%

15.0-37.5%

24.0%

15.0-33.1%

22.6%

11.3-33.9%

23.7%

12.6-34.8%

23.0%

13.4-32.7%

33.5%

24.3-42.7%

33.4%

23.4-43.5%

32.5%

21.4-43.6%

30.1%

19.0-41.3%

29.3%

17.6-40.9%

25.7%

15.3-36.1%

23.9%

15.8-32.0%

22.7%

11.7-33.7%

23.8%

12.7-34.9%

23.0%

13.4-32.6%

36.0%

26.7-45.4%

36.0%

25.7-46.4%

35.3%

23.8-46.8%

33.1%

21.4-44.8%

32.1%

19.6-44.7%

28.2%

16.8-39.7%

26.0%

16.7-35.2%

24.5%

13.0-36.0%

25.6%

14.4-36.9%

24.9%

15.1-34.7%

34.9%

25.6-44.3%

34.9%

24.7-45.1%

34.0%

22.7-45.2%

31.5%

20.3-42.8%

30.7%

18.8-42.5%

27.1%

16.5-37.6%

25.2%

17.0-33.5%

24.0%

12.9-35.1%

25.1%

13.9-36.4%

24.3%

14.6-34.0%

37.6%

28.1-47.1%

37.6%

27.1-48.1%

36.9%

25.2-48.5%

34.6%

22.8-46.4%

33.7%

21.0-46.3%

29.7%

18.1-41.3%

27.4%

18.1-36.7%

25.9%

14.3-37.6%

27.1%

15.7-38.5%

26.4%

16.5-36.3%

37.0%

27.5-46.4%

36.9%

26.6-47.2%

36.0%

24.6-47.4%

33.5%

22.1-44.9%

32.6%

20.6-44.6%

29.0%

18.2-39.7%

27.1%

18.7-35.5%

25.8%

14.5-37.2%

27.0%

15.6-38.4%

26.1%

16.3-36.0%

39.8%

30.1-49.4%

39.8%

29.1-50.4%

39.0%

27.2-50.8%

36.8%

24.8-48.7%

35.8%

22.9-48.7%

31.7%

19.9-43.6%

29.4%

19.9-38.9%

27.9%

16.1-39.7%

29.1%

17.5-40.6%

28.3%

18.3-38.4%

38.6%

29.0-48.2%

38.5%

28.1-49.0%

37.6%

26.0-49.1%

35.1%

23.5-46.7%

34.2%

22.1-46.4%

30.5%

19.6-41.4%

28.6%

20.1-37.1%

27.3%

15.9-38.8%

28.5%

17.0-40.0%

27.7%

17.7-37.6%

41.5%

31.7-51.2%

41.5%

30.7-52.3%

40.8%

28.8-52.7%

38.5%

26.3-50.6%

37.5%

24.4-50.5%

33.4%

21.4-45.4%

31.0%

21.4-40.6%

29.5%

17.5-41.5%

30.7%

19.0-42.4%

29.9%

19.7-40.1%

40.4%

30.6-50.1%

40.3%

29.7-50.9%

39.3%

27.6-51.0%

36.8%

25.1-48.5%

35.9%

23.6-48.2%

32.2%

21.1-43.2%

30.3%

21.7-38.9%

29.0%

17.4-40.6%

30.1%

18.4-41.8%

29.3%

19.2-39.4%

43.3%

33.5-53.2%

43.4%

32.4-54.3%

42.6%

30.5-54.7%

40.3%

28.0-52.6%

39.3%

26.0-52.5%

35.1%

23.0-47.3%

32.7%

22.9-42.5%

31.2%

19.0-43.3%

32.4%

20.5-44.2%

31.6%

21.3-42.0%

45.0%

35.0-55.1%

44.9%

34.0-55.9%

44.0%

31.9-56.0%

41.4%

29.3-53.5%

40.4%

27.7-53.2%

36.6%

25.1-48.0%

34.6%

25.7-43.5%

33.2%

21.3-45.2%

34.4%

22.4-46.5%

33.6%

23.1-44.0%

48.2%

38.0-58.4%

48.3%

37.0-59.5%

47.5%

34.9-60.0%

45.1%

32.3-57.8%

44.0%

30.3-57.7%

39.7%

27.2-52.3%

37.2%

27.1-47.3%

35.6%

23.1-48.2%

36.9%

24.6-49.1%

36.1%

25.4-46.8%

   |  Appendix B



58

Table B12. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2075 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2075 applied to interpolated WRF C-C Scale Factor)

Table B13. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2080 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2080 applied to interpolated WRF C-C Scale Factor)

34.8%

25.6-44.1%

34.9%

24.6-45.3%

34.4%

22.8-45.9%

32.4%

20.5-44.2%

31.3%

18.3-44.4%

27.2%

15.1-39.4%

24.5%

14.6-34.5%

22.9%

11.3-34.6%

24.1%

13.0-35.1%

23.5%

13.8-33.2%

37.5%

28.1-46.9%

37.7%

27.1-48.4%

37.4%

25.4-49.3%

35.5%

23.1-47.9%

34.4%

20.5-48.3%

29.9%

16.7-43.2%

26.7%

15.6-37.8%

24.9%

12.7-37.1%

26.1%

14.8-37.3%

25.6%

15.7-35.5%

36.7%

27.4-46.1%

36.8%

26.3-47.3%

36.3%

24.5-48.0%

34.3%

22.3-46.3%

33.2%

20.0-46.4%

29.0%

16.7-41.4%

26.3%

16.2-36.5%

24.7%

12.8-36.5%

25.8%

14.6-37.0%

25.2%

15.4-35.1%

39.6%

30.1-49.2%

39.8%

29.0-50.7%

39.5%

27.3-51.7%

37.6%

25.0-50.2%

36.5%

22.4-50.6%

31.9%

18.5-45.4%

28.7%

17.4-40.0%

26.8%

14.4-39.2%

28.0%

16.6-39.4%

27.5%

17.4-37.6%

39.0%

29.5-48.6%

39.1%

28.4-49.8%

38.6%

26.6-50.5%

36.5%

24.3-48.8%

35.5%

22.0-48.9%

31.2%

18.6-43.8%

28.4%

18.1-38.8%

26.8%

14.7-38.8%

27.9%

16.5-39.3%

27.3%

17.3-37.4%

42.1%

32.4-51.8%

42.3%

31.3-53.4%

42.0%

29.6-54.4%

40.1%

27.3-52.9%

38.9%

24.5-53.3%

34.3%

20.6-48.0%

31.0%

19.4-42.5%

29.1%

16.5-41.7%

30.2%

18.7-41.8%

29.8%

19.5-40.1%

40.7%

31.1-50.4%

40.8%

30.0-51.6%

40.3%

28.2-52.4%

38.2%

25.8-50.6%

37.1%

23.5-50.7%

32.8%

20.1-45.5%

30.0%

19.5-40.5%

28.3%

16.1-40.5%

29.5%

17.9-41.0%

28.9%

18.7-39.0%

44.0%

34.1-53.8%

44.2%

33.0-55.3%

43.8%

31.2-56.4%

41.9%

28.9-54.9%

40.7%

26.1-55.3%

36.0%

22.1-49.9%

32.6%

21.0-44.3%

30.7%

17.9-43.5%

31.9%

20.2-43.7%

31.5%

21.1-41.9%

43.0%

33.2-52.8%

43.1%

32.1-54.1%

42.6%

30.3-54.9%

40.5%

27.9-53.1%

39.4%

25.5-53.2%

35.0%

22.0-48.0%

32.1%

21.4-42.8%

30.4%

18.0-42.8%

31.6%

19.8-43.3%

31.0%

20.7-41.3%

46.4%

36.4-56.4%

46.6%

35.3-58.0%

46.3%

33.5-59.0%

44.4%

31.1-57.6%

43.1%

28.3-58.0%

38.3%

24.2-52.5%

34.9%

23.0-46.8%

33.0%

20.0-46.0%

34.2%

22.2-46.1%

33.7%

23.1-44.3%

44.9%

34.9-54.8%

45.0%

33.8-56.1%

44.4%

32.0-56.9%

42.3%

29.5-55.1%

41.2%

27.1-55.2%

36.7%

23.6-49.9%

33.8%

23.0-44.6%

32.1%

19.5-44.6%

33.3%

21.4-45.2%

32.7%

22.2-43.1%

48.4%

38.3-58.5%

48.6%

37.1-60.1%

48.2%

35.3-61.2%

46.3%

32.9-59.7%

45.1%

30.0-60.1%

40.2%

25.8-54.6%

36.7%

24.6-48.8%

34.7%

21.5-47.9%

36.0%

23.9-48.0%

35.5%

24.8-46.2%

46.8%

36.8-56.9%

46.9%

35.7-58.2%

46.4%

33.8-59.0%

44.2%

31.3-57.2%

43.1%

28.9-57.3%

38.6%

25.2-51.9%

35.6%

24.6-46.6%

33.8%

21.1-46.6%

35.1%

23.0-47.1%

34.5%

23.9-45.0%

50.4%

40.2-60.7%

50.7%

39.0-62.3%

50.3%

37.2-63.4%

48.3%

34.7-61.9%

47.1%

31.8-62.4%

42.2%

27.6-56.7%

38.6%

26.4-50.9%

36.6%

23.2-50.0%

37.8%

25.6-50.1%

37.4%

26.5-48.2%

52.0%

41.5-62.4%

52.1%

40.4-63.8%

51.5%

38.4-64.6%

49.3%

35.9-62.7%

48.1%

33.4-62.9%

43.4%

29.6-57.2%

40.3%

29.0-51.7%

38.5%

25.3-51.7%

39.8%

27.3-52.2%

39.1%

28.2-50.1%

55.8%

45.2-66.5%

56.1%

44.0-68.2%

55.7%

42.1-69.3%

53.7%

39.6-67.8%

52.4%

36.5-68.2%

47.2%

32.1-62.4%

43.6%

30.9-56.3%

41.5%

27.6-55.3%

42.8%

30.1-55.5%

42.3%

31.0-53.5%
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Table B14. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2085 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2085 applied to interpolated WRF C-C Scale Factor)

Table B15. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2090 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2090 applied to interpolated WRF C-C Scale Factor)

40.7%

31.1-50.2%

41.0%

29.9-52.0%

40.8%

28.3-53.2%

39.2%

26.1-52.2%

37.9%

23.1-52.8%

33.0%

18.7-47.4%

29.3%

17.0-41.6%

27.3%

14.5-40.0%

28.4%

17.0-39.8%

28.1%

17.9-38.3%

44.5%

34.7-54.3%

44.9%

33.5-56.3%

44.9%

31.9-57.9%

43.5%

29.8-57.2%

42.1%

26.2-58.0%

36.8%

21.2-52.5%

32.5%

18.9-46.1%

30.2%

16.8-43.6%

31.4%

19.8-43.0%

31.2%

20.8-41.7%

43.0%

33.3-52.7%

43.3%

32.1-54.5%

43.1%

30.5-55.8%

41.5%

28.2-54.7%

40.2%

25.1-55.3%

35.2%

20.6-49.9%

31.4%

18.9-44.0%

29.4%

16.4-42.3%

30.5%

19.0-42.1%

30.2%

19.9-40.6%

47.0%

37.1-57.0%

47.4%

35.8-59.1%

47.5%

34.3-60.7%

46.0%

32.1-59.9%

44.6%

28.4-60.8%

39.2%

23.3-55.2%

34.8%

21.0-48.7%

32.5%

18.9-46.1%

33.7%

21.9-45.5%

33.5%

22.9-44.2%

45.7%

35.8-55.6%

46.0%

34.6-57.4%

45.8%

32.9-58.7%

44.2%

30.7-57.6%

42.9%

27.5-58.3%

37.8%

22.9-52.8%

33.9%

21.2-46.7%

31.8%

18.6-45.0%

33.0%

21.2-44.8%

32.7%

22.1-43.2%

50.0%

39.9-60.1%

50.4%

38.6-62.3%

50.4%

37.0-63.9%

48.9%

34.7-63.2%

47.5%

31.0-64.1%

42.0%

25.8-58.3%

37.6%

23.4-51.7%

35.2%

21.2-49.1%

36.4%

24.3-48.4%

36.2%

25.3-47.1%

47.7%

37.6-57.7%

48.0%

36.4-59.5%

47.8%

34.7-60.9%

46.1%

32.4-59.8%

44.8%

29.2-60.4%

39.7%

24.5-54.8%

35.7%

22.8-48.7%

33.6%

20.2-47.0%

34.8%

22.8-46.7%

34.5%

23.8-45.1%

52.1%

41.8-62.4%

52.5%

40.5-64.6%

52.6%

38.9-66.3%

51.1%

36.6-65.5%

49.6%

32.9-66.4%

44.1%

27.5-60.6%

39.5%

25.2-53.8%

37.1%

22.9-51.2%

38.3%

26.1-50.5%

38.1%

27.1-49.1%

50.3%

40.1-60.5%

50.6%

38.8-62.4%

50.5%

37.1-63.8%

48.7%

34.8-62.7%

47.4%

31.5-63.3%

42.2%

26.7-57.6%

38.2%

24.9-51.4%

35.9%

22.3-49.6%

37.2%

25.0-49.4%

36.9%

26.0-47.7%

54.9%

44.5-65.4%

55.4%

43.1-67.6%

55.4%

41.5-69.4%

53.9%

39.2-68.6%

52.4%

35.3-69.5%

46.7%

29.9-63.6%

42.1%

27.5-56.7%

39.6%

25.2-54.0%

40.9%

28.4-53.3%

40.7%

29.5-51.9%

52.4%

42.0-62.7%

52.7%

40.8-64.6%

52.5%

39.0-66.0%

50.8%

36.7-64.9%

49.4%

33.3-65.6%

44.1%

28.5-59.8%

40.1%

26.7-53.5%

37.8%

24.0-51.7%

39.1%

26.7-51.4%

38.7%

27.7-49.8%

57.2%

46.5-67.8%

57.6%

45.2-70.0%

57.6%

43.5-71.8%

56.1%

41.2-71.0%

54.6%

37.3-71.9%

48.8%

31.7-65.9%

44.1%

29.3-58.9%

41.6%

27.0-56.2%

42.9%

30.3-55.5%

42.7%

31.3-54.1%

54.6%

44.1-65.1%

54.9%

42.8-67.0%

54.7%

41.0-68.4%

53.0%

38.6-67.3%

51.6%

35.2-68.0%

46.2%

30.3-62.1%

42.1%

28.5-55.7%

39.8%

25.7-53.8%

41.1%

28.6-53.6%

40.7%

29.6-51.9%

59.5%

48.7-70.2%

59.9%

47.3-72.5%

60.0%

45.6-74.3%

58.4%

43.2-73.5%

56.9%

39.3-74.5%

51.0%

33.7-68.4%

46.2%

31.2-61.3%

43.7%

28.9-58.5%

45.0%

32.2-57.8%

44.8%

33.3-56.3%

60.2%

49.4-71.1%

60.6%

48.0-73.1%

60.4%

46.2-74.6%

58.6%

43.7-73.4%

57.2%

40.2-74.2%

51.6%

35.1-68.1%

47.3%

33.2-61.4%

44.9%

30.3-59.5%

46.2%

33.3-59.2%

45.9%

34.3-57.5%

65.5%

54.3-76.6%

65.9%

52.8-79.0%

66.0%

51.1-80.9%

64.3%

48.6-80.0%

62.8%

44.5-81.1%

56.7%

38.7-74.7%

51.7%

36.1-67.4%

49.1%

33.7-64.4%

50.4%

37.1-63.7%

50.2%

38.2-62.2%
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Table B16. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2095 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2095 applied to interpolated WRF C-C Scale Factor)

Table B17. Percent Change in Precipitation Depth for Scaling Historical Atlas 14 to 2100 under 
SSP5-8.5 (Based on CMIP6 C-C Trend for 2100 applied to interpolated WRF C-C Scale Factor)

48.1%

38.1-58.0%

48.6%

36.8-60.4%

48.8%

35.3-62.3%

47.6%

33.2-61.9%

46.1%

29.1-63.1%

40.4%

23.4-57.3%

35.5%

20.6-50.4%

32.9%

18.9-47.0%

34.1%

22.3-46.0%

34.1%

23.4-44.8%

51.7%

41.6-61.9%

52.3%

40.1-64.5%

52.8%

38.7-66.8%

51.7%

36.7-66.8%

50.1%

32.1-68.2%

44.0%

25.7-62.2%

38.5%

22.2-54.7%

35.7%

21.0-50.3%

36.9%

24.9-48.9%

37.0%

26.0-48.0%

50.8%

40.7-61.0%

51.4%

39.3-63.4%

51.6%

37.8-65.4%

50.3%

35.7-65.0%

48.8%

31.5-66.1%

43.0%

25.8-60.2%

38.0%

22.8-53.2%

35.4%

21.1-49.7%

36.6%

24.6-48.7%

36.6%

25.7-47.5%

54.7%

44.4-65.1%

55.3%

42.9-67.8%

55.8%

41.5-70.1%

54.7%

39.4-70.1%

53.1%

34.7-71.6%

46.8%

28.2-65.4%

41.2%

24.6-57.8%

38.3%

23.4-53.3%

39.6%

27.3-51.9%

39.7%

28.5-50.9%

54.0%

43.7-64.4%

54.6%

42.3-66.8%

54.8%

40.8-68.9%

53.5%

38.6-68.5%

52.0%

34.3-69.7%

46.0%

28.4-63.7%

40.9%

25.4-56.4%

38.3%

23.7-52.9%

39.5%

27.2-51.8%

39.5%

28.3-50.7%

58.2%

47.6-68.7%

58.8%

46.1-71.5%

59.3%

44.7-73.9%

58.2%

42.5-73.9%

56.5%

37.7-75.4%

50.1%

31.1-69.1%

44.4%

27.4-61.3%

41.4%

26.1-56.7%

42.7%

30.2-55.2%

42.8%

31.3-54.3%

56.3%

45.8-66.8%

56.9%

44.4-69.3%

57.1%

42.9-71.4%

55.8%

40.6-71.0%

54.2%

36.3-72.2%

48.2%

30.3-66.1%

43.0%

27.3-58.8%

40.3%

25.5-55.1%

41.6%

29.1-54.1%

41.6%

30.2-52.9%

60.6%

49.9-71.4%

61.3%

48.3-74.2%

61.8%

46.9-76.6%

60.6%

44.7-76.6%

59.0%

39.8-78.1%

52.4%

33.1-71.8%

46.6%

29.4-63.8%

43.6%

28.1-59.2%

44.9%

32.2-57.6%

45.0%

33.4-56.7%

59.3%

48.6-70.0%

59.9%

47.2-72.6%

60.1%

45.6-74.7%

58.8%

43.3-74.3%

57.2%

38.9-75.5%

51.1%

32.8-69.3%

45.8%

29.7-61.8%

43.0%

27.9-58.1%

44.3%

31.6-57.0%

44.3%

32.7-55.8%

63.8%

52.9-74.8%

64.5%

51.3-77.7%

65.0%

49.8-80.1%

63.9%

47.6-80.1%

62.1%

42.6-81.6%

55.5%

35.8-75.2%

49.5%

32.0-67.1%

46.5%

30.6-62.3%

47.8%

34.8-60.8%

47.9%

36.0-59.8%

61.7%

50.8-72.5%

62.2%

49.3-75.1%

62.5%

47.8-77.3%

61.1%

45.4-76.9%

59.5%

41.0-78.1%

53.3%

34.8-71.8%

47.9%

31.6-64.2%

45.1%

29.8-60.5%

46.4%

33.5-59.3%

46.4%

34.7-58.1%

66.3%

55.2-77.4%

67.0%

53.6-80.4%

67.5%

52.1-82.9%

66.3%

49.8-82.9%

64.6%

44.8-84.4%

57.8%

37.8-77.8%

51.8%

34.0-69.6%

48.7%

32.6-64.8%

50.1%

36.9-63.2%

50.2%

38.1-62.3%

64.1%

53.1-75.2%

64.7%

51.6-77.8%

65.0%

50.0-79.9%

63.6%

47.6-79.5%

62.0%

43.1-80.8%

55.6%

36.8-74.4%

50.2%

33.6-66.7%

47.3%

31.7-62.9%

48.7%

35.6-61.8%

48.6%

36.7-60.5%

68.9%

57.6-80.2%

69.6%

56.0-83.2%

70.1%

54.5-85.7%

68.9%

52.1-85.7%

67.2%

47.0-87.3%

60.3%

40.0-80.6%

54.2%

36.1-72.3%

51.0%

34.7-67.4%

52.4%

39.0-65.8%

52.5%

40.2-64.8%

70.4%

59.0-81.9%

71.0%

57.4-84.6%

71.3%

55.7-86.8%

69.9%

53.3-86.4%

68.2%

48.6-87.7%

61.6%

42.0-81.1%

55.9%

38.7-73.1%

53.0%

36.8-69.1%

54.3%

40.7-67.9%

54.3%

42.0-66.7%

75.5%

63.8-87.2%

76.2%

62.1-90.3%

76.7%

60.5-93.0%

75.5%

58.1-93.0%

73.7%

52.8-94.6%

66.6%

45.5-87.7%

60.2%

41.4-79.0%

56.9%

39.9-73.9%

58.4%

44.4-72.3%

58.5%

45.7-71.2%
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