Our Tap Water

The San Francisco Public Utilities Commission (SFPUC) provides 2.7 million customers in cities and towns across the region with water so pure that it meets all federal and state standards. Through careful stewardship of both our natural resources and our infrastructure, every drop that arrives at your home or business is clean and of the highest quality. However, long-term climate change and recent years of reduced rainfall require all of us to rethink the way we use this precious resource.

In response to the three years of nearly statewide drought, in November 2021 the SFPUC declared a Water Shortage Emergency to help extend our water supplies. The SFPUC is asking all of our customers in San Francisco, San Mateo, Santa Clara, and Alameda counties to reduce their water use by cutting waste. Visit sfpuc.org/drought for ways you can help.

Understanding This Report

The SFPUC produces a Water Quality Report every year to provide specific information about where your water comes from, how we treat it, and its overall quality. We do this not only to meet regulatory requirements but also to provide you with clear and important information about our drinking water operations and our public health protection efforts.

We are committed to providing high quality drinking water for all our customers. The SFPUC operates and maintains a water system that extends over a hundred miles across several counties to deliver potable water for consumption by millions of individuals. In addition the SFPUC also maintains a wider system of reservoirs and pipelines on the Peninsula, in the South Bay, and upcountry through to Yosemite. It is our hope that this report will not only provide you with greater knowledge of your water, but also an increased confidence in the skills, talents, and efforts of the SFPUC staff that ensure the highest quality water for every one of our customers.

We’re proud of our water, and we need your help in conserving it. Throughout this report, you’ll find facts and figures to help expand upon the basic information we’re required to provide. We hope you enjoy getting to know a little more about who we are and how you can help make a difference.

WAYS TO SAVE

A leaking faucet wastes hundreds of gallons of water a month. Fix leaks to save water and avoid bill increases.

FIX LEAKS RIGHT AWAY

Visit sfpuc.org/drought for ways to help.
Our Drinking Water Sources and Treatment

Our drinking water is supplied by the San Francisco Regional Water System (SFRWS), which is operated under the auspices of the SFPUC. The major water source originates from spring snowmelt in Yosemite National Park, and flows down the Tuolumne River to storage in Hetch Hetchy Reservoir. Although the well-protected Sierra water source is exempt from state and federal filtration requirements, it receives the following treatment: disinfection using ultraviolet light and chlorine, pH adjustment for optimum corrosion control, fluoridation for dental health protection, and chloramination for maintaining disinfectant residual and minimizing the formation of regulated disinfection byproducts.

Our Hetch Hetchy source is supplemented with surface water from a local watershed, and upcountry non-Hetch Hetchy sources (UNHHS) if needed. Rainfall and runoff from the watershed, which is in Alameda and Santa Clara counties, are collected in Calaveras Reservoir and San Antonio Reservoir for storage followed by delivery to the Sunol Valley Water Treatment Plant (SVWTP) for treatment. Water at the SVWTP is subject to filtration, disinfection, fluoridation, optimum corrosion control, and taste and odor removal.

Throughout the year, the water supplied to us consisted of a blend from the Hetch Hetchy source and the treated water of SVWTP. The UNHHS was not used in 2021.

Protection of Watersheds

The SFPUC conducts watershed sanitary surveys for the Hetch Hetchy source annually and for the local water and UNHHS every five years. The latest sanitary surveys for the local watershed and the UNHHS watershed were completed in 2021 for the period of 2016-2020. All these surveys together with the SFPUC's stringent watershed protection management activities were completed with support from partner agencies including National Park Service and US Forest Service. The purposes of the surveys are to evaluate the sanitary conditions and water quality of the watersheds and to review results of watershed management activities conducted in the preceding years. Wildfire, wildlife, livestock, and human activities continue to be the potential contamination sources. You may contact the San Francisco District office of the State Water Resources Control Board's Division of Drinking Water (SWRCB) at 510-620-3474 for more information.
Water Quality

The SFPUC regularly collects and tests water samples from designated sampling locations throughout the system to ensure the water delivered to you meets or exceeds state and federal drinking water standards. In 2021, we conducted more than 22,140 drinking water tests in the source, transmission, and distribution system. This is in addition to the extensive treatment process control monitoring performed by our certified operators and online instruments.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. To ensure that tap water is safe to drink, the United States Environmental Protection Agency (USEPA) and the SWRCB prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Fluoridation and Dental Fluorosis

Mandated by State law, water fluoridation is a widely accepted practice proven safe and effective for preventing and controlling tooth decay. The SFPUC maintains a fluoride target level of 0.7 milligram per liter (mg/L, or part per million, ppm) in the water. This is consistent with the May 2015 State regulatory guidance on optimal fluoride level. Infants fed formula mixed with water containing fluoride at this level may still have a chance of developing tiny white lines or streaks in their teeth. These marks are referred to as mild to very mild fluorosis, and are often only visible under a microscope. Even in cases where the marks are visible, they do not pose any health risk. The Centers of Disease Control (CDC) considers it safe to use optimally fluoridated water for preparing infant formula. To lessen this chance of dental fluorosis, you may choose to use low-fluoride bottled water to prepare infant formula. Nevertheless, children may still develop dental fluorosis due to fluoride intake from other sources such as food, toothpaste, and dental products.

Contact your healthcare provider or SWRCB if you have concerns about dental fluorosis. For additional information about fluoridation or oral health, visit the SWRCB website waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml, the CDC website cdc.gov/fluoridation, or the SFPUC website sfpuc.org/tapwater.
Get Familiar With Our Watersheds

The system that delivers our water is made up of many different sources of water. We work hard to protect our water and water quality. Find out about each of our reservoirs, how much they contribute to the system and how you can visit them.

Calaveras Reservoir

Fun Fact: The largest of our East Bay reservoirs, Calaveras is located near a seismically active fault. The original dam was built in 1925, and was recently replaced along with several upgrades to improve our ability to better manage the watershed’s biodiversity.

Cherry Lake

Fun Fact: Cherry Lake is a popular recreation spot for local and visitors alike. It provides emergency backup water supply to our system, and recreational boating is permitted on the water itself. This reservoir is maintained in partnership with US Forest Service.

Crystal Springs Reservoir

Fun Fact: Actually consisting of two reservoirs, Upper and Lower Crystal Springs together provide one of the most accessible watersheds to visit offering the opportunity to walk, hike, and even attend docent lead bike tours along nearby trails.

Hetch Hetchy Reservoir

Fun Fact: The name of our largest reservoir likely comes from the Miwok word, hatchatchie, meaning “edible grasses.” Miwok names are still used throughout the area, including the two waterfalls Tueeulala Fall, Wapama Fall, and Kolana Rock.

Lake Eleanor

Fun Fact: Although the current lake was created by the damming of the Eleanor Creek in 1918, there was a smaller natural lake located at the same site, and bearing the same name. Today, visitors can take advantage of trails primarily used for moderate hikes as well as the campground.

Pilarcitos Reservoir

Fun Fact: Construction of Pilarcitos Dam began in 1862, and was completed in 1866. It was raised in 1867 and 1874. The dam is an earth fill dam with a clay puddle core, and a height of 95 feet from foundation to crest. The reservoir has a capacity of just over 1 billion gallons. It serves as a key water supply for Half Moon Bay.

San Andreas Reservoir

Fun Fact: As the name would suggest, the San Andreas fault runs through the reservoir, and the dam holding back the reservoir survived the 1906 earthquake. The 6-mile long Sawyer Camp Trail links San Andreas and Crystal Springs reservoirs.

San Antonio Reservoir

Fun Fact: Located near the town of Sunol in Alameda County, this reservoir was impounded in 1964 by Turner Dam, named after former General Manager of Hetch Hetchy, James H. Turner. Like Calaveras, it is closed to the public.

A watershed is a land area that collects and channels rainfall and snowmelt by gravity to creeks, streams, and rivers, and eventually to common outflow points such as reservoirs, bays, and the ocean.

Get Familiar With Our Watersheds

The system that delivers our water is made up of many different sources of water. We work hard to protect our water and water quality. Find out about each of our reservoirs, how much they contribute to the system and how you can visit them.

Calaveras Reservoir

Fun Fact: The largest of our East Bay reservoirs, Calaveras is located near a seismically active fault. The original dam was built in 1925, and was recently replaced along with several upgrades to improve our ability to better manage the watershed’s biodiversity.

Cherry Lake

Fun Fact: Cherry Lake is a popular recreation spot for local and visitors alike. It provides emergency backup water supply to our system, and recreational boating is permitted on the water itself. This reservoir is maintained in partnership with US Forest Service.

Crystal Springs Reservoir

Fun Fact: Actually consisting of two reservoirs, Upper and Lower Crystal Springs together provide one of the most accessible watersheds to visit offering the opportunity to walk, hike, and even attend docent lead bike tours along nearby trails.

Hetch Hetchy Reservoir

Fun Fact: The name of our largest reservoir likely comes from the Miwok word, hatchatchie, meaning “edible grasses.” Miwok names are still used throughout the area, including the two waterfalls Tueeulala Fall, Wapama Fall, and Kolana Rock.

Lake Eleanor

Fun Fact: Although the current lake was created by the damming of the Eleanor Creek in 1918, there was a smaller natural lake located at the same site, and bearing the same name. Today, visitors can take advantage of trails primarily used for moderate hikes as well as the campground.

Pilarcitos Reservoir

Fun Fact: Construction of Pilarcitos Dam began in 1862, and was completed in 1866. It was raised in 1867 and 1874. The dam is an earth fill dam with a clay puddle core, and a height of 95 feet from foundation to crest. The reservoir has a capacity of just over 1 billion gallons. It serves as a key water supply for Half Moon Bay.

San Andreas Reservoir

Fun Fact: As the name would suggest, the San Andreas fault runs through the reservoir, and the dam holding back the reservoir survived the 1906 earthquake. The 6-mile long Sawyer Camp Trail links San Andreas and Crystal Springs reservoirs.

San Antonio Reservoir

Fun Fact: Located near the town of Sunol in Alameda County, this reservoir was impounded in 1964 by Turner Dam, named after former General Manager of Hetch Hetchy, James H. Turner. Like Calaveras, it is closed to the public.

A watershed is a land area that collects and channels rainfall and snowmelt by gravity to creeks, streams, and rivers, and eventually to common outflow points such as reservoirs, bays, and the ocean.
Special Health Needs

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, and some elderly people and infants, can be particularly at risk from infections.

These people should seek advice about drinking water from their healthcare providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA’s Safe Drinking Water Hotline 800-426-4791 or at epa.gov/safewater.

Per-and Polyfluoroalkyl Substances (PFAS)

PFAS is a group of approximately 5,000 man-made, persistent chemicals used in a variety of industries and consumer products. In 2021, the SFPUC conducted a second round of voluntary monitoring using a new analytical method adopted by the USEPA for some other PFAS contaminants. No PFAS were detected above the SWRCB’s Consumer Confidence Report Detection Levels in our surface water sources. For additional information about PFAS, you may visit SWRCB website waterboards.ca.gov/pfas, SFPUC website sfpuc.org/tapwater, and/or USEPA website epa.gov/pfas.

Contaminants and Regulations

Generally, the sources of drinking water (both tap water and bottled water) include rivers, lakes, oceans, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Such substances are called contaminants, and may be present in source water as:

- **Microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife
- **Inorganic contaminants**, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming
- **Pesticides and herbicides** that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems
- **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities

More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline 800-426-4791, or at epa.gov/safewater.

WAYS TO SAVE

LAWNS AND GARDENS

Use water-wise principles when caring for lawns and gardens -- select climate appropriate plants, efficient irrigation and conservation-friendly design.
Drinking Water and Lead

Exposure to lead, if present, can cause serious health effects in all age groups, especially for pregnant women and young children. Infants and children who drink water containing lead could have decreases in IQ and attention span and increases in learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney or nervous system problems.

Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. There are no known lead service lines in our water distribution system. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and by taking steps to reduce your family’s risk. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your pipes for several minutes, such as running your tap, taking a shower, doing laundry or a load of dishes, before using water for drinking and cooking. You can also use a filter certified by an American National Standards Institute accredited certifier to remove lead from drinking water. If you are concerned about lead in your water, you may wish to have your water tested. Information about lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.
The SFPUC conducted our triennial Lead and Copper Rule (LCR) monitoring in 2021 when we sample from customer taps rather than our distribution system. All six tap sample results were below the SWRCB's detection limits. The next round of LCR monitoring will be in 2024. Contact the SFPUC at (877) 737-8297 for the tap monitoring results.

This report reflects changes in drinking water regulatory requirements during 2021, in which the SWRCB adopted the California version of the federal Revised Total Coliform Rule. The revised rule, effective on July 1, 2021, maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbes (i.e., total coliform and \textit{E. coli} bacteria). Greater public health protection is anticipated, as the revised rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

Lead User Service Line (LUSL)

As previously reported, we completed an inventory of lead user service lines (LUSL) in our distribution system in 2018. There are no known pipelines and connectors between water mains and meters made of lead. If a galvanized service line is found or the unknown material of a service line cannot be verified, the service line is scheduled for replacement. Our policy is to remove and replace any LUSL promptly if it is discovered during pipeline repair. Information and map showing our LUSL inventory can be found at SWRCB website \texttt{waterboards.ca.gov/drinking_water/certlic/drinkingwater/lead_service_line_inventory_pws.html}.

Lead and Copper Tap Sampling Results

The SFPUC conducted our triennial Lead and Copper Rule (LCR) monitoring in 2021 when we sample from customer taps rather than our distribution system. All six tap sample results were below the SWRCB’s detection limits. The next round of LCR monitoring will be in 2024. Contact the SFPUC at (877) 737-8297 for the tap monitoring results.

State Revised Total Coliform Rule

This report reflects changes in drinking water regulatory requirements during 2021, in which the SWRCB adopted the California version of the federal Revised Total Coliform Rule. The revised rule, effective on July 1, 2021, maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbes (i.e., total coliform and \textit{E. coli} bacteria). Greater public health protection is anticipated, as the revised rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

WAYS TO SAVE

OUTDOORS

Landscaping with native plants attracts beneficial bugs and minimizes the need for chemicals.

\texttt{sfpuc.org/savewater}
Key Water Quality Terms

The following are definitions of key terms referring to standards and goals of water quality noted on the data table.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs or MCLGs as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Regulatory Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Turbidity: A water clarity indicator that measures cloudiness of the water, and is also used to indicate the effectiveness of the filtration system. High turbidity can hinder the effectiveness of disinfectants.

Cryptosporidium is a parasitic microbe found in most surface water. We regularly test for this waterborne pathogen and found it at very low levels in source water and treated water in 2021. However, current test methods approved by the USEPA do not distinguish between dead organisms and those capable of causing disease. Ingestion of *Cryptosporidium* may produce symptoms of nausea, abdominal cramps, diarrhea, and associated headaches. *Cryptosporidium* must be ingested to cause disease, and it may be spread through means other than drinking water.
This report is a snapshot of last year’s water quality. The tables below list detected contaminants in our drinking water in 2021 and the information about their typical sources. Contaminants below detection limits for reporting are not shown, in accord with regulatory guidance. The SFRWS holds a SWRCB monitoring waiver for some contaminants in the surface water supply and therefore their monitoring frequencies are less than annual. Visit sfpuc.org/WQR-analytes for a list of all water quality parameters monitored in raw water and treated water by the SFRWS in 2021.

DETECTED CONTAMINANTS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNIT</th>
<th>MCL/TT</th>
<th>PHG OR (MCLG)</th>
<th>RANGE</th>
<th>AVERAGE OR [MAX]</th>
<th>TYPICAL SOURCES IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfiltered Hetch Hetchy Water</td>
<td>NTU</td>
<td>5</td>
<td>N/A</td>
<td>0.2 - 0.4 [1]</td>
<td>[3.3]</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Filtered Water from Sunol Valley Water Treatment Plant (SVWTP)</td>
<td>NTU</td>
<td></td>
<td>N/A</td>
<td>-</td>
<td>[0.4]</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Disinfection By-Products and Precursor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>ppb</td>
<td>80</td>
<td>N/A</td>
<td>28 - 38</td>
<td>(38)</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Five Haloacetic Acids</td>
<td>ppb</td>
<td>60</td>
<td>N/A</td>
<td>28 - 32</td>
<td>(32)</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>ppm</td>
<td>TT</td>
<td>N/A</td>
<td>1.2 - 2.2</td>
<td>1.8</td>
<td>Various natural and man-made sources</td>
</tr>
<tr>
<td>Microbiological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform</td>
<td></td>
<td></td>
<td>NoP ≤1</td>
<td>(0)</td>
<td>[0]</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Fecal coliform and E. coli</td>
<td></td>
<td></td>
<td>0 Positive Sample</td>
<td>(0)</td>
<td>[0]</td>
<td>Human or animal fecal waste</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>cyst/L</td>
<td>TT</td>
<td>N/A</td>
<td>0 - 0.04</td>
<td>0.01</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Inorganics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (raw water)</td>
<td>ppm</td>
<td>2.0</td>
<td>ND - 0.7</td>
<td>4.4</td>
<td></td>
<td>Runoff / leaching from natural deposits</td>
</tr>
<tr>
<td>Chloramine (as chlorine)</td>
<td>ppm</td>
<td>MRDL = 4.0</td>
<td>MRDLG = 4</td>
<td>2.3 - 3.2</td>
<td>(2.8)</td>
<td>Drinking water disinfectant added for treatment</td>
</tr>
</tbody>
</table>

CONSTITUENTS WITH SECONDARY STANDARDS

<table>
<thead>
<tr>
<th>CONSTITUENT</th>
<th>UNIT</th>
<th>SMCL</th>
<th>PHG</th>
<th>RANGE</th>
<th>AVERAGE</th>
<th>TYPICAL SOURCES IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>500</td>
<td>N/A</td>
<td><3 - 8.8</td>
<td>4.4</td>
<td>Runoff / leaching from natural deposits</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>µS/cm</td>
<td>1600</td>
<td>N/A</td>
<td>34 - 217</td>
<td>125</td>
<td>Substances that form ions when in water</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>500</td>
<td>N/A</td>
<td>1.1 - 29</td>
<td>15</td>
<td>Runoff / leaching from natural deposits</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>ppm</td>
<td>1000</td>
<td>N/A</td>
<td><20 - 96</td>
<td>48</td>
<td>Runoff / leaching from natural deposits</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>5</td>
<td>N/A</td>
<td>ND - 0.2</td>
<td>ND</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

NON-REGULATED WATER QUALITY PARAMETERS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>O RL</th>
<th>RANGE</th>
<th>AVERAGE</th>
<th>KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (as CaCO₃)</td>
<td>ppm</td>
<td>N/A</td>
<td>7.7 - 57</td>
<td>32</td>
<td>< /= least than / less than or equal to</td>
</tr>
<tr>
<td>Boron</td>
<td>ppb</td>
<td>1000 (NL)</td>
<td>ND - 123</td>
<td>ND</td>
<td>Max = Maximum</td>
</tr>
<tr>
<td>Calcium (as Ca)</td>
<td>ppm</td>
<td>N/A</td>
<td>3 - 17</td>
<td>10</td>
<td>Min = Minimum</td>
</tr>
<tr>
<td>Chlorate</td>
<td>ppm</td>
<td>800 (NL)</td>
<td>28 - 420</td>
<td>187</td>
<td>N/A = Not Available</td>
</tr>
<tr>
<td>Hardness (as CaCO₃)</td>
<td>ppm</td>
<td>N/A</td>
<td>7.7 - 60</td>
<td>34</td>
<td>ND = Non-Detect</td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>N/A</td>
<td>0.2 - 5.5</td>
<td>2.7</td>
<td>NL = Notification Level</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>N/A</td>
<td>8.6 - 9.7</td>
<td>9.4</td>
<td>NoP = Number of Coliform-Positive Sample</td>
</tr>
<tr>
<td>Potassium</td>
<td>ppm</td>
<td>N/A</td>
<td>0.4 - 1.1</td>
<td>0.7</td>
<td>O RL = Other Regulatory Level</td>
</tr>
<tr>
<td>silica</td>
<td>ppm</td>
<td>N/A</td>
<td>5.4 - 5.9</td>
<td>5.6</td>
<td>ppb = part per billion</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>N/A</td>
<td>3.1 - 17</td>
<td>9.8</td>
<td>ppm = part per million</td>
</tr>
<tr>
<td>Strontium</td>
<td>ppb</td>
<td>N/A</td>
<td>14 - 181</td>
<td>98</td>
<td>µS/cm = microSiemens/centimeter</td>
</tr>
</tbody>
</table>
FOOTNOTES ON TOWN OF SUNOL WATER SYSTEM - WATER QUALITY DATA:
(1) These are monthly average turbidity values measured every 4 hours daily. (2) This is a TT requirement for filtration systems. (3) Disinfection byproducts are monitored annually. This is the highest locational annual monitoring result. (4) Total organic carbon is a precursor for disinfection byproduct formation. The TT requirement applies to the filtered water from the SWWTP only. (5) The MCL was changed to E. coli based starting on July 1, 2021 after the SWRCB adopted the Revised Total Coliform Rule. (6) The SWRCB recommended an optimal fluoride level of 0.7 ppm be maintained in the treated water. In 2021, the range and average of the fluoride levels were 0.6 ppm - 0.9 ppm and 0.7 ppm, respectively. (7) Natural fluoride in the Hetch Hetchy source was ND. Elevated fluoride levels in the SWWTP raw water were attributed to the transfer of fluoridated Hetch Hetchy water into San Antonio Reservoir. (8) This is the highest running annual average value. (9) The detected chlorate in the treated water is a degradation product of sodium hypochlorite used by the SFRWS for water disinfection.

Note: The different water sources blended at different ratios throughout the year have resulted in varying water quality. Additional water quality data may be obtained by calling the SFPUC's Water Quality Division toll-free number at 877-737-8297.

WAYS TO SAVE
RESOURCES
Take Advantage of Free Water Conservation Resources, including guides in English, Spanish, Chinese, and Filipino at sfpuc.org/drought
Water quality policies are decided at SFPUC Commission hearings, held the 2nd and 4th Tuesdays of each month at 1:30 pm in San Francisco City Hall, Room 400.

San Francisco Public Utilities Commission

Every day we deliver high-quality drinking water to 2.7 million people in San Francisco, Alameda, Santa Clara and San Mateo counties. We generate clean, reliable hydroelectricity that powers 100% of San Francisco’s vital services, including police and fire stations, street lights, Muni, SF General Hospital and more.

Anson Moran, PRESIDENT
Newsha K. Ajami, VICE PRESIDENT
Sophie Maxwell, COMMISSIONER
Tim Paulson, COMMISSIONER

This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

Mahalaga ang impormasyon ito. Mangyaring ipasalin ito.

Cette rapport contient des information importantes concernant votre eau potable. Veuillez traduire, ou parlez avec quelqu’un qui peut le comprendre.

Этот отчет содержит важную информацию о вашей питьевой воде. Переведите его или поговорите с тем, кто это понимает.

この報告書には上水道に関する重要な情報が記されております。翻訳をお願いなされると、内容をご理解なさっておられる方がお尋ね下さい。

यह रूचना सहकार्यकल्यान एवं सेवा प्रदान करने के लिए जल प्रदान करती है। यह रूचना सहकार्यकल्यान एवं सेवा प्रदान करने के लिए जल प्रदान करती है।

이 안내는 매우 중요합니다. 본문을 위해 번역인을 사용하십시오.