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Purpose 
This report describes the methods and calibration of the hydrologic module component of the Long-Term 

Vulnerability Assessment and Adaptation Planning for the San Francisco Public Utilities Commission 

Water Enterprise. The hydrologic module of the Vulnerability Assessment is comprised of hydrologic 

models spanning three hydrologic regions (i.e., Upcountry, Alameda (or Eastbay), Peninsula systems) and 

using two hydrologic modeling methods: the Sacramento Soil Moisture Accounting (SAC-SMA) model 

and the Precipitation Runoff Modular System (PRMS). 

All of the modeling components for the three regions have been completed. The input data and the 

computational tools (all relevant scripts) needed to run the model have been transferred to SFPUC.    

Integration of the hydrologic models into the Vulnerability Assessment will be straightforward, with 

scripts written in R or Python as needed to facilitate translating climate assumptions to inflows into 

reservoirs for use in the dependent water system model. 

 

1. Introduction 
One of the dominant operational drivers of a water system is water availability, which varies in both time 

and space, and at multiple temporal scales. Water availability in the San Francisco and Sierra Nevada 

region in particular varies significantly within the year, from year to year, and is increasingly expected to 

change over the long term as climate changes, yet in uncertain ways. Understanding and representing 

ranges of potential future hydrologic conditions is thus a core component to the Long-Term Vulnerability 

Assessment and Adaptation Planning for the San Francisco Public Utilities Commission (SFPUC) Water 

Enterprise project (“Vulnerability Assessment”). Representations of hydrologic processes is needed 

specifically to map uncertain climatic conditions into uncertain reservoir inflow conditions and inflow 

estimation capabilities. 

The SFPUC Regional Water System (RWS) operations are directly impacted by hydrologic processes in 

three regions: the Upper Tuolumne River watershed in the Central Sierra Nevada (“Upcountry”); 

Alameda Creek watershed in the East Bay (“Alameda”); and the Peninsula watersheds (“Peninsula”). The 

principal subwatersheds comprising each of these three regions are shown in Figure 1-1. To represent 

hydrologic processes in each of these contributing subwatersheds for the Vulnerability Assessment, a 

suite of hydrologic models was developed for each region. Together, these models comprise the 

Hydrology Module of the Vulnerability Assessment, as described in the Detailed Analytical Design and 

Work Plan. 

For each of these regions, this report summarizes the importance of the region, hydrologic modeling 

methods, calibration results, and hydrologic drought analysis. In the Vulnerability Assessment, the 

hydrologic models will be used to evaluate the hydrologic response of the regions − streamflow in 

particular − to various climate assumptions. The integration of hydrologic models into the Vulnerability 

Assessment are discussed last. 
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The organization of the hydrology module into three different regions with different hydrologic models is 

a matter of convenience and legacy efforts to re-configure the previous Upcountry hydrologic model. 

Organizing around three different regions is convenient in that the model development process can be 

divided amongst hydrologists. It also recognizes the unique hydro-geographic characteristics of each 

region. The use of different modeling methods (described below) resulted from earlier preliminary 

investigations of modeling options. It was decided to retain and extend the existing model of the 

Upcountry region (i.e., PRMS) and develop new models for the Alameda and Peninsula regions using 

SAC-SMA. Though this regionalization is worth noting, from a modeling perspective it is of little 

practical importance, as all models will be integrated into the hydrologic module when used with the 

water system model. The climate inputs (precipitation and temperature) and model outputs (inflows to 

reservoirs) will be uniform and consistent. 

 

 

Figure 1-1 Map showing watersheds for the three regions that SFPUC receives waters from. 

 

2. Overview of methods 
Precipitation-Runoff Modeling System (PRMS) (Markstrom, et al., 2015) models were developed for the 

Upcountry region, while Sacramento Soil Moisture Accounting (SAC-SMA) (NOAA, 2002) models were 

developed for the Alameda and Peninsula regions, as described below. Though these modeling tools 

differ in their methodological approaches, their overall structure and purpose are similar. Hydrologic 

processes are calculated for discrete areas, called Hydrologic Response Units (HRUs), within which 

physical characteristics are assumed homogeneous. Inputs to the hydrologic models (i.e., to each HRU) 

include meteorological conditions (daily precipitation and temperature, and other conditions depending on 
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the specific model), land use / land cover information (which may be implicit in a model parameter rather 

than explicitly accounted for). 

For each model, necessary inputs were obtained from historical records as available, with model 

calibration used to estimate unknown parameters based on observed runoff. Outputs include several 

hydrologic response variables, including surface/subsurface flow, base flow, actual evapotranspiration, 

and snow water equivalent. Simulated streamflow can then be used directly or aggregated in a range of 

systems related processes and decisions (e.g., inflow to reservoirs, input to determining water year type, 

etc.). 

Calibration of each model is a significant and important part of the hydrologic model development 

process. There are often many unknown parameters in a hydrologic model, which must be estimated 

through some systematic approach. Typically, optimization is employed for this model parameter 

estimation process, as optimization methods, by design, can help identify the best combinations of values 

to achieve some performance objective. In each of the models developed, evolutionary algorithms were 

used for the calibration process. With the evolutionary algorithm approach, initial random sets of 

hydrologic parameters are successively improved by identifying which combinations of hydrologic 

parameters result in a better performing hydrologic model. Several evolutionary algorithms exist, which 

differ primarily by their strategy for improving parameter values through successive iterations. 

In each calibration process used, the goal is to estimate the parameter values that result in the best match 

between observed and simulated runoff at locations with historical observations. Hydrologic calibration 

often uses some combination of various measures of model performance. Other metrics were also used in 

the calibration process, but metrics differ between model types. 

Though metrics used for calibration targets differed between models, calibration results are described 

consistently using Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE), which indicates 

overall fit, and percent bias, which provides some measure of whether the model produces more (positive 

bias) or less (negative bias) compared to observations.  Further explanation of calibration metrics is 

available in appendix F.   

3. Upcountry Hydrologic Model 

3.1. Introduction 
The Tuolumne River and its tributaries provide the water in the Upcountry watersheds in the Sierra 

Nevada. Three major reservoirs located in the Upcountry watersheds − Cherry, Eleanor and Hetch Hetchy 

− account for most of the storage in the SFPUC system. The SFPUC is the junior water right holder on 

the Tuolumne River at Don Pedro Reservoir, while the senior water rights holders at Don Pedro are the 

Modesto and Turlock Irrigation Districts (MID and TID). An agreement with MID and TID allowed for 

the creation of the Water Bank, a virtual reservoir in Don Pedro Reservoir wherein the SFPUC can meet 

its water rights obligations in advance of inflows. A hydrologic model of the Upcountry region, partially 

built by SFPUC and extended by UMass, will help identify vulnerabilities not only to immediate water 

supplies but also to Water Bank operations. 
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3.2. Methodology 

3.2.1. PRMS 

The Precipitation-Runoff Modeling System (PRMS) is a deterministic, distributed-parameter, physical-

process-based hydrologic model (Figure 3-1) developed and maintained by the U.S. Geological Survey 

(USGS).  PRMS is developed with modules that are used to simulate various hydrologic processes.  A 

given process can be represented with several modules, where each module represents an alternative 

conceptualization or approach to simulation of that specific process. 

PRMS-IV, the version adopted in this study and abbreviated as PRMS here, accepts three files as input: a 

control file, a parameter file, and a data file.  The control file initializes the PRMS model by activating 

necessary modules and contains the absolute paths for the parameter file and the data file.  The parameter 

file specifies dimensions and parameters required for a PRMS simulation (i.e., the parameter values for 

each HRU).  The data file contains the time-series data used as the input for the model; i.e., precipitation 

and temperature time series.  Figure 3-2 shows the computational sequence within PRMS.   

Input to the PRMS model includes fixed parameters and time series input data for each HRU. There are 

options for more than one hundred parameters in PRMS for each HRU. For the Upcountry PRMS models, 

43 parameters were selected as important for calibration. Input time series data include daily precipitation 

(P), minimum temperature (Tmin), and maximum temperature (Tmax). Table 3-1 shows area and number of 

HRUs associated with each Upcountry subwatershed. 

To facilitate running the PRMS models for both model calibration and the many climate scenarios 

anticipated for the Vulnerability Assessment, a wrapper library for PRMS called prmsR was developed 

using the R scripting language.  prmsR generates the necessary input text files (control file and parameter 

file), runs PRMS, and parses the generated output files.  In addition, prmsR can parse control files and 

parameter files from previously-run scenarios, such as those generated previously by SFPUC for the 

Hetch Hetchy/Cherry-Eleanor regions. This tool will be critical for both the model calibration and a large 

number of PRMS runs with climate change scenarios in the Vulnerability Assessment. 
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Figure 3-1 Hydrologic Processes simulated within PRMS (Markstrom, et al., 2015). 
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Figure 3-2. Computational sequence of PRMS (Markstrom, et al., 2015) 

 

Table 3-1 Upcountry HRUs 

Subwatershed 

Area 

(thousand acres) # of HRUs 

Hetch Hetchy 290 280 

Cherry-Eleanor 126 211 

Don Pedro 564 574 
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3.2.2. Calibration 

The PRMS was used to develop three models for the Upcountry region: one for inflows to Hetch Hetchy, 

one for combined inflows to the Cherry and Eleanor reservoirs, and a third for the region between Don 

Pedro reservoir and those three upstream reservoirs. The first two of these models (Hetch Hetchy and 

Cherry-Eleanor) were developed by SFPUC, while the UMass team developed a new PRMS model for 

the Don Pedro sub-region. To have a unified and consistent calibration within the Upcountry region, 

UMass referred to the Hetch Hetchy/Cherry-Eleanor models to calibrate the new Don Pedro model; the 

model parameters being calibrated were kept same and some of parameters of the Hetch Hetchy/Cherry-

Eleanor PRMS models were adopted by the Don Pedro PRMS (e.g., snow and PET module parameters). 

The Upcountry subwatersheds are shown in Figure 3-3, as are the HRUs for the Don Pedro subwatershed. 

As the Hetch Hetchy and Cherry-Eleanor PRMS models were developed by SFPUC,  

The calibration process entails estimating 43 hydrologic parameters for each HRU in each region. Particle 

Swarm Optimization (PSO), a kind of evolutionary algorithm (Marini & Walczak, 2015), was selected to 

perform the calibration for the Don Pedro PRMS, while a Monte Carlo experiments were performed to 

find the best performing parameter sets of the Hetch Hetchy/Cherry-Eleanor PRMS models.  

PSO is inspired by the collective behavior of social animals such as birds and fish.  Particles—in this 

case, a possible set of hydrologic parameter values—are randomly placed in the search space of the 

problem and each evaluates the objective function at its current location.  Each particle then determines 

its movement through the search space through the combination of the history of its own current and best-

fitness locations with those from the members of the swarm with some randomness.  Then the next 

iteration begins after all particles (possible parameter sets) have been moved.  Eventually, all the particles 

are likely to move close to an optimum of the fitness function (Poli, et al., 2007). The PSO algorithm is 

depicted generally in Figure 3-4. 

In the Upcountry region calibration, the calibration objective (fitness function) for each region is to 

minimize Root Mean Squared Error (RMSE). The calibration process of the Don Pedro model is to 

maximize Kling-Gupta Efficiency (KGE; Gupta et al., 2009), and has been finalized within an R routine 

developed to facilitate the PRMS calibration task. KGE can range between −∞ and 1; −∞ means no 

fitness between discharge simulation and observation, while 1 means perfect fitness between modeled and 

observed stream flows.  
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Figure 3-3. Upcountry hydrologic region subwatersheds and HRUs (Don Pedro subwatershed only). Subwatershed 

outlets are shown as black dots. 
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Figure 3-4. Particle Swarm Optimization Schematic Flowchart 

 

3.2.3. Climate Data 

The PRMS models are driven by daily maximum and minimum temperature and precipitation. The 

weather stations collected for the up-country PRMS study are shown in Figure 3-5, with the blue square 

representing the 9 temperature stations and the green triangle representing the 9 precipitation stations. As 

shown in the figure, six stations provide both precipitation and temperature.   
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Figure 3-5 Up Country weather stations 

 

The Upcountry PRMS models use a subset of the weather stations selected based on proximity, data 

quality, and length of data record.  Table 3-2 provides a description of the nine precipitation stations and 

nine temperature stations used to drive the Up-country PRMS models.   

Table 3-2 Stations used in PRMS 

Station CDEC ID Precipitation Temperature Duration of Data 

Record 

Hetch Hetchy HEM Yes Yes 1/1/1930 to present 

Buck Meadows BKM Yes Yes 7/19/1999 to present 

Tuolumne Meadows TUM Yes Yes 10/15/1985 to present 

Cherry Valley Dam CVM Yes Yes 12/25/1952 to present 

Moccasin MCN Yes Yes 1/1/1930 to present 

Paradise Meadow PDS No Yes 10/1/1985 to present 
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Horse Meadow HRS No Yes 10/1/1985 to present 

Slide Canyon SLI No Yes 10/1/1985 to present 

Pinecrest PCR Yes Yes 7/10/1996 to present 

Gianelli Meadow GNL Yes No 5/24/1988 to present 

Yosemite YYV Yes No 12/10/1998 to present 

Early Intake EIN Yes No 1/1/1930 to present 

 

While not direct inputs to the PRMS models, a total of 22 snow pillow and snow survey locations were 

used to calibrate the PRMS snow outputs. Figure 3-6 shows the geographic locations of the snow 

observation points.  In addition to the snow pillow and survey data, the PRMS snow module was also 

calibrated to the Airborne Snow Observatory’s basin-wide average snow measurement. 

In the following sub-sections, the use of precipitation and temperature data in the PRMS is described in 

more detail. 

 

Figure 3-6 Snow pillow and survey sites for the Up Country region 
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3.2.3.1. Interpolation of Precipitation Station 

As the climate station data is often missing from one period to another, the precipitation stations Buck 

Meadows (BKM), Tuolumne Meadows (TUM), Pinecrest (PCR), and Gianelli Meadow (GNL) were 

created by monthly (12) multivariate regressions using the precipitation stations Hetch Hetchy (HTH), 

Cherry Valley (CVM), Moccasin (MCN), Yosemite (YOS), and Early Intake (INTAKE).  The 

multivariate regression used to estimate daily precipitation at the gage i from available gages k during the 

month m is given by Equation 3-1.    

 𝑃𝑖(𝑡) = ∑ 𝑎𝑘,𝑖,𝑚𝑃𝑘(𝑡)

𝑘

+ 𝑏𝑘,𝑖,𝑚, 
3-1 

with 𝑃𝑖(𝑡) the estimated precipitation at the gage i for the time step t during the month m. 𝑃𝑘(𝑡) is the 

daily precipitation at the gage k ϵ {HTH, CVM, MCN, YOS, INTAKE}. 𝑎𝑘,𝑖,𝑚 and 𝑏𝑘,𝑖,𝑚 are the slopes 

and intercepts of the multivariate regression. For the sake of model parsimony, the use of a single model 

that could predict precipitation for all months was investigated. However, such a model leads to a 

significantly bias in the seasonal pattern of precipitation with substantially lower precipitation during 

winter months and larger estimated precipitation during summer months.  

Note that application of Equation 3-1 leads to two issues that need to be address prior using the 

interpolated precipitation time series as input to PRMS model. First, since the slope parameters 𝑎𝑘,𝑖,𝑚 can 

take negative values, the predicted daily precipitation can take negative values too. For these rare 

instances, the negative values are replaced by 0. The second issue is when all predictor values 𝑃𝑘(𝑡) are 0 

for the time step t, which lead the predicted precipitation 𝑃𝑖(𝑡) to be equal to the intercepts 𝑏𝑘,𝑖,𝑚. To 

prevent creating artificially precipitation events while all predictors were dry days, the monthly volume of 

precipitation falling during days where predictors are all null is redistributed over rainy days within the 

same month. The distribution is not even as days with the large rainfall gets more extra rainfall than days 

with only few rainfall. 

The regression parameters were calibrated over the period of 1999-10-01 through 2016-10-01 and 

validated over the period of 1969-10-01 through 1999-10-01.  The calibrated parameters are shown in 

appendix A.  These parameters were calibrated for the period of 1999-10-01 through 2016-10-01 and 

while validated for the period of 1969-10-01 through 1999-10-01.  The estimated precipitations at BKM, 

TUM, PCR, and GNL were then checked based on all rain gauge predictors, where no precipitation is 

measured the rainfall assigned are set to 0.  These precipitation volumes were then re-distributed to other 

precipitation events to preserve mass-balance.   

Figure 3-7 and Figure 3-8 shows the calibration and validation scatterplot for the monthly multivariate 

regression.  This methodology was accepted to extend out the stochastic weather generator (CliWxGen) 

stations for the Up Country region.    
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Figure 3-7. Calibration scatterplot for the monthly multivariate regression 

 

 

Figure 3-8. Validation scatterplot for the monthly multivariate regression 
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3.2.3.2. Interpolation of Temperature Station 

Temperature interpolation was done by SFPUC for Hetch Hetchy and Cherry-Eleanor PRMS Hydrology 

models.  The same input maximum and minimum temperatures were used, but the specific steps done by 

SFPUC are available in Appendix A.   

3.2.3.3. Bias Correction of Temperature Station 

The temperature dataset was bias corrected using quantile mapping with normal distributions fit for each 

month on a daily time-step.  The bias correction was done using maximum and minimum observed 

temperature from 1969-10-01 through 2016-09-30 and the input climate time-series from the baseline 

maximum and minimum temperature from the climate stress test.   

 

3.3. Don Pedro Hydrology Calibration Results 
The Don Pedro PRMS model contains 30 parameters that no data was available, therefore they were 

calibrated using particle swarm optimization. The particle swarm optimization function was applied to the 

Don Pedro watershed with 150 particles (i.e., 150 parameter sets) improved over 50 iterations.  The Don 

Pedro model contains 76 universal parameters and 53 distributed parameters.  Out of the 129 parameters, 

a total of 30 parameters were calibrated through the particle swarm optimization scheme (Figure 3-4). 

Below, Table 3-3 lists the parameters being calibrated.     

Table 3-3 PRMS parameters calibrated with particle swarm optimization 

Parameter Distributed Description 

Rad_trncf No Transmission coefficient for short-wave radiation through the 

winter vegetation canopy 

Cecn_coef No Monthly (January to December) convection condensation 

energy coefficient 

Imperv_stor_max No Maximum impervious area retention storage for each HRU 

Pref_flow_den No Fraction of the soil zone in which preferential flow occurs for 

each HRU 

Smidx_coef No Coefficient in non-linear contributing area algorithm for each 

HRU 

Smidx_exp No Exponent in non-linear contributing area algorithm for each 

HRU 

Snowinfil_max No Maximum snow infiltration per day for each HRU 

Soil_moist_init No Initial value of available water in capillary reservoir for each 

HRU 



29 

 

Soil_moist_max No Maximum available water holding capacity of capillary 

reservoir from land surface to rooting depth of the major 

vegetation type of each HRU 

Soil_rechr_init No Initial storage for soil recharge zone for each HRU 

Soil_rechr_max No Maximum storage for soil recharge zone for each HRU 

Transp_tmax No Temperature index to determine the specific date of the start of 

the transpiration period 

Radadj_intcp No Intercepts in air temperature range adjustment to solar radiation 

equation 

Radadj_slope No Slope in air temperature range adjustment to degree-day 

equation 

Jh_coef No Monthly (January to December) air temperature coefficient 

K_coef Yes 

(segments) 

Travel time of flood wave from one segment to the next 

downstream segment 

X_coef No The amount of attenuation of the flow wave 

Carea_max No Maximum possible area contributing to surface runoff 

expressed as a portion of the HRU area 

Fastcoef_lin No Linear coefficient in equation to route preferential-flow storage 

down slope for each HRU 

Fastcoef_sq No Non-linear coefficient in equation to route preferential flow 

storage down slope for each HRU 

Sat_threshold No Water holding capacity of the gravity and preferential flow 

reservoirs; difference between field capacity and total soil 

saturation for each HRU 

Slowcoef_lin No Linear coefficient in equation to route gravity reservoir storage 

down slope for each HRU 

Slowcoef_sq No Non-linear coefficient in equation to route gravity-reservoir 

storage down slope for each HRU 

Soil2gw_max No Maximum amount of the capillary reservoir excess that is 

routed directly to the GWR for each HRU 

Ssr2gw_exp No Non-linear coefficient in equation used to route water from the 

gravity reservoirs to the GWR for each HRU 
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Ssr2gw_rate No Linear coefficient in equation used to route water from the 

gravity reservoir to the GWR for each HRU 

Sstor_init No Initial storage of the gravity and preferential-flow reservoirs for 

each HRU 

Gwflow_coef No Linear coefficient in the equation to compute groundwater 

discharge for each GWR 

Gwsink_coef No Linear coefficient in the equation to compute outflow to the 

groundwater sink for each GWR 

Gwstor_init No Storage in each GWR at the beginning of a simulation 

 

Because the Don Pedro PRMS model domain is affected by upstream dam operations, reconstructed 

naturalized flow have been derived as calibration target using data from the Hetch Hetchy streamflow 

gauge, Cherry/Eleanor gauge, and the La Grange streamflow gauge: 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤 = 𝐿𝑎 𝐺𝑟𝑎𝑛𝑔𝑒 − (𝐻𝑒𝑡𝑐ℎ 𝐻𝑒𝑡𝑐ℎ𝑦 + " Cherry Eleanor⁄ " 𝐺𝑎𝑢𝑔𝑒) 

The above natural target streamflow calculation results in some negative values. The negative streamflow 

values were not calculated when factoring in for the performance metric of the Kling-Gupta Efficiency. 

The calibrated parameter sets returned a KGE of 0.70 on a monthly scale. The KGEs for other temporal 

scales along with other performance metrics (NSE and RMSE) are also provided in Table 3-4. Error! 

Reference source not found.  shows the streamflow hydrograph for various temporal scales as well as 

monthly scatterplot and flow duration curve for La Grange gauge, which is a summation of Hetch Hetchy, 

Cherry-Eleanor, and Don Pedro hydrology models.  When reviewing the daily streamflow plot, the 

modelled Don Pedro model is observed to underestimate the peaks of the streamflow. However, on the 

monthly aggregate time step, the modelled peaks line up much better with the natural target streamflow. 

Based on the annual hydrograph comparison, the overall calibrated model fits are fair for monthly 

streamflow as the model underestimating for the wet years and overestimates during the dry years. 

However, the annual fit is not very good with underestimation of streamflow over wetter periods and the 

overestimation for the drier periods.  The scatterplot in Error! Reference source not found. has a fitted 

line which shows the hydrology models underestimates observed monthly streamflow.  The flow duration 

curve shows the models underestimates during low flow periods.  This has resulted in requiring an 

additional correction model, which was developed and described in detail on section 3.5.   

Table 3-4 Performance indices of Don Pedro accretions calibration 

 KGE (Target) NSE Percent Bias (%) 

Daily (Target) 0.65 0.56 
2.2 

Monthly 0.70 0.70 
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Yearly 0.56 0.78 

 

 

Figure 3-9. Daily, Monthly, and Water Year hydrograph, monthly scatterplot, and monthly flow duration curve for 

La Grange Streamflow at New Don Pedro Reservoir.  Flow Duration Curve has the Y-axis in log-based scale. 

 

3.4. Definition of Water Available to the City (WAC) 
A good reproduction of the unimpaired Tuolumne flow at La Grange is key for the RWS as the Modesto 

and Turlock Irrigation Districts (MID and TID) entitlements and Water Available to the City (WAC) 

values are defined. The performance of the combined PRMS model simulations through the mass balance 
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equation somewhat averages out the performance obtained for the three calibrated PRMS models. Similar 

to its upstream components, the simulated flow at La Grange presents a bias in variance at annual time 

scale, leading to overestimation of dry years and underestimation of wet years. 

TID and MID have senior water rights on the water of the Tuolumne River. WAC represents the water 

from the unimpaired flow in the Tuolumne River at La Grange that belongs to SFPUC. The Raker Act 

specifies how much and when Tuolumne river flows must be available to MID and TID (district 

entitlements). On any given day, the actual district entitlements consist of the lesser of i) 4,792 AF/day 

(2,416 cfs) from June 14th through April 14th or 8,064 AF/day (4,066 cfs) from April 15th through June 

13th (aka: maximum district entitlement), and ii) unimpaired flow in the Tuolumne River at La Grange. 

The implication is that water available to SFPUC from the Tuolumne River (i.e., WAC) is any 

unimpaired flow at La Grange (below Don Pedro) that is greater than actual district entitlements. Figure 

3-10 illustrates the WAC for an extremely wet water year (1983) and an extremely dry water year (1987), 

which highlights the large variability of both the unimpaired flow of the Tuolumne River at La Grange 

and the WAC. Regarding the calculated WAC from the PRMS simulations, it is noted that the 

underestimation of the inter-annual variability of the unimpaired flow at La Grange leads to similar bias 

for WAC. An overestimation of the WAC during dry years is a concern as it prevents proper 

representation of droughts.   

 

Figure 3-10. Water Available to the City (WAC) for an extreme wet year (left, 1983) and a dry year (right, 1987).  

The year 1987 is the first year of the historical drought 1987-1992.  The shaded area shows the WAC and the dash-

grey line shows the maximum district entitlement.  Note that the y-axis differs for the two subplots.   

 

3.5. Current Precipitation Index (CPI)  
Given the importance of a good reproduction of the WAC, UMASS collaborated with SFPUC to correct 

the PRMS simulations across the Upcountry region. A post-processing model was developed by SFPUC 

to correct the PRMS daily streamflow. The considered method attends to correct the residual model errors 

using meteorological indices. For precipitation variable, an index called “Current Precipitation Index” is 

used to account for the basin wetness. For temperature variable, a heat index similar to a degree-day is 

used to account from the basin warmness. Note that the considered post-processed correction is a 

parametric method (i.e., it requires some parameters to be calibrated). The calibration of these parameters 

was done with the main objective to better reproduce the dry years. The complete writeup of the post-

processing model, including calibration and validation, are provided in Appendix J along with the 

calibrated parameter sets.   
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The comparison of the raw PRMS simulations (i.e., prior correction) with the post-processed simulations 

(i.e., after correction) is shown in Table 3-5 and in Figure 3-11 and Figure 3-12. The results clearly 

indicate a significant improvement of the inter-annual variability of the simulated streamflow, with 

significant improvement of the KGE and NSE scores at annual time scale, especially for Cherry 

Reservoir/Lake Eleanor watershed and Don Pedro accretion watershed. It also results in a much better 

reproduction of the inter-annual variability of the annual Tuolumne flow at La Grange and of the WAC. 

The flow duration curve (Figure 3-11and the scatterplots (Figure 3-12) figures illustrate the significant 

improvement of the simulations during the low flow years/months. The downside of the post-processed 

model is that it worsens the bias across the region. At La Grange, the overall bias shifted from +3.2% 

prior correction to -6.8% after correction. Regarding WAC, the reduction of the bias in inter-annual 

variability (and a significant improvement of the low WAC years) comes with a significant improvement 

of the high WAC years (Figure 3-11 and Figure 3-12). Table 3-5 also shows the improvement of the KGE 

and NSE scores at all temporal scales, with a major improvement at annual scale, which, however, leads 

to a slight increase in the negative bias (from -8.2% to -8.8%).  

Table 3-5. PRMS streamflow calibration metrics for the Upcountry region before and after correction.  

Performance criteria are estimated over the period 1972-2015. 

 Raw PRMS simulations (prior correction) Post-processed PRMS simulations (after correction) 

 KGE NSE Percent Bias (%) KGE NSE Percent Bias (%) 

Hetch Hetchy Reservoir inflow    

Daily 0.85 0.70 

3.9 

0.87 0.74 

-3.8 Monthly 0.92 0.86 0.92 0.89 

Water Year 0.76 0.91 0.83 0.91 

Cherry Reservoir/Lake Eleanor inflow     

Daily 0.78 0.56 

3.0 

0.85 0.73 

7.3 Monthly 0.91 0.83 0.90 0.88 

Water Year 0.67 0.86 0.91 0.92 

Accretion flow at Don Pedro Reservoir     

Daily 0.65 0.56 

2.2 

0.67 0.63 

-20.8 Monthly 0.70 0.70 0.76 0.77 

Water Year 0.56 0.78 0.77 0.86 

Naturalized Tuolumne flow at La Grange      

Daily 0.79 0.68 

3.2 

0.87 0.79 

-6.8 Monthly 0.84 0.83 0.91 0.90 

Water Year 0.66 0.86 0.87 0.94 

Water Available to the City (WAC) 

Daily 0.71 0.56 

-8.2 

0.81 0.70 

-8.8 Monthly 0.78 0.75 0.88 0.85 

Water Year 0.61 0.82 0.84 0.93 
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Figure 3-11. Flow duration curve for Tuolumne Flow at La Grange, Hetch Hetchy Reservoir inflow, Cherry 

Reservoir and Lake Eleanor inflows, accretion flow to Don Pedro Reservoir, and WAC for annual water year and 

monthly temporal scale.  The black, blue and red lines show the flow duration curve for the historic observed flow, 

the raw PRMS simulation (i.e., prior correction), and the post-processed PRMS simulation (i.e., after correction). A 

logarithm scale is used for the streamflow to ease visualization of the low flow years/months.   
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Figure 3-12. Scatterplot for Tuolumne Flow at La Grange, Hetch Hetchy Reservoir inflow, Cherry Reservoir and 

Lake Eleanor inflows, and accretion flow to Don Pedro Reservoir for annual water year and monthly temporal 

scales.  The black line represents the identity line whereas blue and red lines represent the linear regression 

between the observed flow and the raw and post-processed PRMS simulations, respectively.   

While the post-processing model improved the results, additional work needs to be performed to reduce 

the bias.  The hydrologic model used to simulate the streamflow on the Tuolumne watershed in response 

to precipitation and temperature overestimates streamflow during dry years. For example, Table 3-6 

shows the flow computed at the Tuolumne River at La Grange is overestimated, and therefore WAC is 

also overestimated by about 482,000 acre-feet during the drought sequence 1987-1992 (observed is 

813,000 acre-feet versus simulated is 1,295,000 acre-feet). 

Table 3-6. Comparison of observed and simulated WAC over 1987-1992 drought using PRMS hydrology models 

 Water available to the City (acre-feet) 

Water Year Observed Simulated Error 
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1987 40,439 174,868 134,428 

1988 23,521 112,425 88,905 

1989 379,305 383,159 3,854 

1990 46,632 114,957 68,325 

1991 269,733 302,719 32,986 

1992 53,525 207,221 153,697 

1987-92 totals 813,155 1,295,349 482,194 

 

 

3.6. Climate Stress Test 

3.6.1. Hydrology 

This section presents the results of climate stress test for all Upcountry subwatershed systems using the 

weather generator output that reflect a number of scenarios for changes in precipitation and temperature.   

As the PRMS models require precipitation and temperature datasets as inputs, the weather generator for 

the Up Country region generated 1,360 climate scenarios using statistical modeling with 8 different 

temperature changes (i.e., temperature increases relative to the baseline ranging from 0oC to 7oC, with an 

increment level of 1oC), 17 different precipitation changes (from -40% to +40%, with 5% increments), 

and 10 realizations. Therefore, single set of climate stress test reflects 136 different climate change 

scenarios.   

The climate stress test were applied to all three watersheds of the Up Country region (Hetch Hetchy, 

Cherry & Eleanor, and Don Pedro) over the period of 2021 through 2070 and the response surface was 

generated based on annual mean streamflow. Figure 3-13 shows the response surface for the Hetch 

Hetchy, Cherry & Eleanor, and Don Pedro watersheds with the dotted line representing the historical 

baseline of annual flows. In addition, the dots represent different GCM projections of precipitation and 

temperature changes under RCP 8.5. The Upcountry annual flow response surfaces show that annual 

flows for Upcountry regions are not significantly sensitive to changes in temperature as demonstrated by 

the vertical contour lines in the response surfaces. On the other hand, precipitation changes greatly 

influence the changes in annual flows of the Upcountry watershed systems.  
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Figure 3-13. Climate response surface of annual flow at Hetch Hetchy reservoir, Cherry Reservoir/Lake Eleanor, 

Don Pedro accretion, and Tuolumne River at La Grange.  The white color shows no change in streamflow while 

blue and red shows increase or decrease in annual flow, respectively.  The yellow and green dots over the 

response surface shows CMIP5 projections under RCP 8.5 for two 30-year long periods: 2040 (2026-2055) and 

2070 (2056-2095).  Baseline is 1986-2005.  

 

 

3.6.2. Water Available to the City (WAC) 

The modifications of the Tuolumne River flow at La Grange under changing precipitation and warming 

temperature affects the annual values of WAC and its distribution through the years. Figure 3-14 

illustrates the effects of warming temperature (left) and changing precipitation (right) on the Tuolumne 

River flow at La Grange and WAC. Following the response of the Tuolumne River flow at La Grange, 

precipitation change is the main driver of change of annual WAC. For example, a decrease in 

precipitation by 20% leads to a reduction of the annual average WAC from roughly 750 TAF to 400 TAF 

(i.e., a decrease by roughly 45%), while an increase by 20% precipitation leads to an increase of WAC 

from 750 TAF to 1260 TAF (i.e., +68%). At the annual scale, warming temperature slightly reduces the 

WAC. For instance, a +5°C warming decreases the annual average WAC from roughly 750 TAF to 729 

TAF (i.e., a decrease by -2.8%). Figure 3-15 shows the modification of the annual average WAC to 

change in both temperature and precipitation. It highlights no significant compound effect on the annual 

WAC. 
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a) Effect of temperature change b) Effect of precipitation change 

Figure 3-14 Effect of temperature and precipitation change on the Unimpaired flow at La Grange and Water 

Available for the City (WAC). Top panel shows unimpaired flow at La Grange (solid line) and WAC (dash line) with 

changes in temperature (ΔT) (a) and precipitation (ΔP) (b). Middle and bottom panels show the distribution of 

changes in temperature from CMIP5 projections (RCP8.5) and expert elicitations and for two 30-yr long periods 

centered in 2040 and 2070. 

 

Figure 3-15. Climate response surface of the annual WAC in respect with change in precipitation (x-axis) and 

temperature (y-axis). See Error! Reference source not found. caption for details. 

It is important to note that behind the non-significant change in annual WAC that would follow from 

warming temperature (Figure 3-14, left), the WAC is actually expected to decrease for roughly 60% of 

the years, and increase for 40% of the years (Figure 3-16). As illustrated Figure 3-16, the distribution of 

change in annual WAC is left skewed, which means that absolute values of reduction in WAC can get 

much larger values than for the increases in WAC.  
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Figure 3-16. Empirical Cumulative Distribution Function (ECDF) of change in annual WAC resulting from 

warming temperature. Positive values (blue panel) shows years for which WAC increases and negative values (red 

panel) shows years for which WAC decreases. Results are obtained across the 9 stochastic realizations plus the 

historical realization. 

 Figure 3-17 illustrates the modification of the distribution of annual WAC under changing precipitation 

and temperature. Note that changes in all quantiles of the WAC distribution are not same. For instance, 

when compared the 20% precipitation reduction scenario (light red, Figure 3-17 left) with the baseline 

precipitation scenario (black, Figure 3-17 left), it is noted that the median value (i.e., 50% exceedance 

probability) decreases from 600 TAF to 300 TAF, which corresponds to a decrease by 50%. However, the 

quantile 10 of the distribution (i.e., 10% exceedance probability) decreases from 100 TAF to 40 TAF, 

which corresponds to a decrease by 60%. Figure 3-17 (left) also shows that under baseline climate 

conditions, roughly 25% of the years have a WAC values lower than 269 TAF while a reduction in 

precipitation by 20% increases this number to almost 45%, which also explains the significant increase in 

frequency of droughts.  

The distribution of annual WAC obtained from the 510 realizations under warming conditions almost 

lines up with the one obtained under baseline conditions (Figure 3-17, right).  Despite the lack of 

significant change in annual WAC, the lower percentiles of the distribution (i.e., lower than 15th) slightly 

increases (Figure 3-17, right), which likely explains the reduction is drought frequency (i.e., increase in 

return period). 
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Figure 3-17. Effect of precipitation (left) and temperature (right) changes on the distribution of annual WAC. 

Annual WAC values are based on water year. Values are shown across the ‘stochastic realizations’ dataset 

composed by 509 stochastic realization plus the historical realization.  

Figure 3-18 shows the simulated hydrograph for six selected water years obtained from the realization 10 

under baseline climate and +7°C warming. An extreme warming was considered in this figure for 

illustration only. It highlights that both increase and decrease in annual WAC can happened during 

normal, dry and wet WAC years. It also shows that change in WAC roughly follows from three 

mechanisms: 

• The spring runoff volume tends to be smaller with warmer temperatures due to a reduced 

snowpack. The spring runoff volume tends also to spread over longer period. Both effect tends to 

reduce WAC during spring season. 

• Spring runoff arrive earlier in the year because above freezing temperatures are seen earlier in the 

year. Given the higher maximum district entitlement from April 15th through June 13th, either a 

reduction or an increase in WAC is possible during spring / summer seasons. 

• The winter floods tend to be more frequent and with larger magnitude because more precipitation 

fall as rain in winter, leading to an increase in WAC during this period. 

All these mechanisms combine in a non-linear fashion and lead to either an increase or decrease in annual 

WAC. The change in WAC distribution within years illustrated with by example years in Figure 3-18 is 

summarized in Figure 3-19 and Figure 3-20. Both figures show scatterplots for each calendar month 

between monthly WAC values obtained for the current climate (i.e., no change in precipitation and 

temperature) and +3°C or +7°C warming, respectively. These figures show that winter months will likely 

get larger WAC values as temperature increase while summer months will see a significant reduction in 

WAC. As an example, under the extreme +7°C warming, August months are likely to have null WAC, 

while WAC during July months will be close to null value too. 
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“Normal” WAC Years  

  

“Dry” WAC Years  

  

“Wet” WAC Years  

  

Figure 3-18. Illustration of the effect of temperature change in the temporality and cumuli of WAC. The example 

presented in this figure are all from the realization R10. Black color show the Tuolumne River flow at La Grange 

under historical climate while the red color shows the results obtained for an extreme warming of +7°C. Black and 

red shaded areas shows the WAC. Left and right columns show years for which WAC either decreases or decreases 

with a +7°C warming, respectively. The first, second and third row illustrate years for which the annual WAC is 

close to the average across the 10 realization (≈750 TAF), low and large, respectively. 
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Figure 3-19. Change in monthly distribution of WAC resulting from a warming by +3°C. The panels show for each 

calendar month the scatter plot between monthly WAC obtained under baseline climate (x-axis) and +3°C warming 

(y-axis). The black dash-line is the ‘no change’ line. Blue and red colors are used to highlight months for which the 

WAC either increases or decreases, respectively. Results shown are obtained across the 10 realizations, meaning 

that each scatterplot shows 500 data points (50 years x 10 realizations) 



43 

 

 

Figure 3-20. Same as Figure 3-19 but for a temperature scenario of +7°C 

In summary, precipitation change has an effect on the mean annual WAC volume.  

• By 2040, the median projections of +2°C warming combined with 0% change in mean annual 

precipitation results in no significant change in mean annual WAC volume but WAC would 

decrease in 60% of the years and in 20% of them, the decrease would be more than 30 TAF.  

• By 2040, most projections and elicitations of precipitation change fall between -5% and +5% 

which would correspond to a change in mean annual WAC between a decrease of 110 TAF and 

an increase of 120 TAF. Also, most projections and elicitations of warming are between +1°C 

and +4°C. At +4°C, WAC would decrease by more than 50 TAF in 20% of the years. 

• WAC would decrease from May through August and would increase in the other months.  

• By 2070 RCP8.5, the median projections of about +4°C combined with 0% change in mean 

annual precipitation results in a 2.5% decrease in mean annual WAC volume. Most projections 

and elicitations of precipitation change are between -15% and +15% resulting in change in mean 

annual WAC volume between a decrease of 40% and an increase of 45%. . Most projections and 

elicitations of warming range between +3°C and +6°C. At +6°C, WAC would decrease by more 

than 80 TAF in 20% of the years. 

Note that the PRMS hydrologic model used to simulate the streamflow on the Tuolumne watershed in 

response to precipitation and temperature overestimates streamflow during dry years. For example, the 

flow computed at the Tuolumne River at La Grange (foot note: the location where flow is allocated 

between the Districts and San Francisco) is overestimated, and therefore San Francisco’s allocation is also 

overestimated by about 482,000 acre-feet during the drought sequence 1987-1992 (observed is 813,000 

acre-feet versus simulated is 1,295,000 acre-feet). This volume of water is significant and is about equal 

to the volume of rationing that was required by customers during the six-year period, and so overstating 

the RWS water supply reliability.  
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3.7. NCAR vs CliWxGen 
The section provides a summary of the task of comparing synthetic sequences of daily climate generated 

by NCAR-WG and CliWxGen. Although both NCAR and CliWxGen generators produced new sequences 

of daily precipitation and daily maximum and minimum temperature across the Upcountry region, the 

comparison described in this section focuses on the precipitation variable only. The comparison is carried 

out using simulated precipitation at nine stations spread over the Upcountry region. Precipitation time 

series at these nine locations are required inputs to PRMS, the hydrology model used for the LTVA to 

simulate streamflow across the region.  The nine considered precipitation stations are Hetch Hetchy 

Reservoir, Buck Meadows, Tuolumn Meadows, Cherry Valley Dam, Moccasin, Pinecrest, Yosemite, 

Gianlelli and Early Intake). Prior to comparing the NCAR and CliWxGen weather generator outputs, it is 

worth highlighting few differences between these two tools.  

As described in more details in the previous sections, CliWxGen is a stochastic weather generator that 

combines a wavelet autoregressive model with the method of fragment and the k-nearest neighbors (Knn) 

approach. As such, CliWxGen is only driven by the low frequency components that are identified from 

the historical observed rainfall. In this study, only one significant low frequency component was 

identified (≈15 years frequency). CliWxGen simulated daily precipitation time series for only five out of 

the nine stations that are used in PRMS model. Precipitation time series at the four missing locations are 

obtained via interpolation from the five available stations; see section 3.2.3.1 for more details regarding 

the interpolation). Nine 50-year long stochastic realizations of daily precipitation are used for the 

comparison. These nine stochastic realizations built by CliWxGen are deemed consistent with the 

historical period used, which is the period 1956-2011. 

The NCAR weather generator is a non-parametric stochastic weather generator that combines a Markov 

Chain Model (MCM) with the Knn approach. MCM is used to create daily stochastic sequences of dry, 

wet and very wet days over arbitrary long sequences (in this case, 30-year long periods). Knn is used to 

randomly select a date from the historic record that satisfies the sequence state (dry-to-dry, dry-to-wet, 

dry-to-very wet, etc) that has been simulated with MCM. To account for seasonal effects, candidate days 

are sampled within a moving window that is centered on the current Julian day. For each selected dates, 

precipitation, maximum and minimum temperature are sampled at once to keep consistency among the 

weather variables. For future periods, i) a similar temperature trend as observed in the GCM projections is 

added to the synthetically generated temperature time series; ii) the magnitude of extremes is corrected to 

account for the change in extreme precipitation between historic and future periods, as seen in the GCM 

projections. Four different GCMs are used to condition the NCAR weather generator (CCSM, CESM, 

GFDL, MPI). Up to 30 stochastic realizations were generated for each GCM-forcing. The dataset used to 

build NCAR weather generator is the dataset that SPUC uses as input data to their PRMS models for 

Upcountry. This dataset spans from 1969 to 2015. More details regarding the NCAR weather generator 

are given in the Technical Report: Climate Change Storylines (NCAR, 2018). 

Figure 3-21 shows the results of the comparison of the simulated annual precipitation obtained from the 

NCAR weather generator (boxplot) and CliWxGen (colored symbols). Although the comparison is meant 

to be carried out under current climate conditions, simulated future periods are shown for NCAR-WG. As 

compared to the historical mean of the Upcountry annual precipitation (i.e., roughly 950 mm; 37.4 in), all 

nine CliWxGen realizations well reproduced the historical average. The historic realization (brown square 

symbol) is from five available gauges for which available rainfall data covers the period used by 
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CliWxGen (i.e., 1956-2011) plus precipitation at the missing four gauges were obtained via interpolation 

(see Section 3.2.3.1). The black square shows the annual average from historic observed ground stations 

that are used in PRMS. Each NCAR-WG produces a range of mean statistics that varies from 1981-2010 

through 2041-2070. It is observed CCSM, CESM, and GFDL-informed realizations’ mean decreases from 

1981-2010 to 2011-2040 before increasing for 2041-2070. Historical (1981-2010) CCSM, CESM, GFDL, 

and MPI-informed realizations centered closely on the historical mean (based on the median) and captures 

the range of the nine stochastic climate realizations. However, CESM tends to produce lower annual total 

precipitation than the historical (one realization of CESM goes as low as about 800 mm).  

 

Figure 3-21. Comparison of the simulated annual average precipitation across the Upcountry region (average of 9 

stations). Results from the NCAR-WG are shown using boxplots. Each color shows a different GCM used to 

conditions the NCAR-WG. Each boxplot summarizes the distribution across the 30 stochastic realizations. Results 

are shown for the baseline period (1981-2010, labeled ’1980’) and two futures periods (2011-2040 and 2041-2070, 

respectively labeled ‘2010’ and ‘2040’). Results obtained from each stochastic realization (9 total) simulated via 

CliWxGen are shown with colored square symbols. CliWxGen realizations are meant to represent the 1956-2011 

period (to ease the reading, results are repeated for each period). Note that a random noise was added to the x-axis 

of the square to ease reading of the figure. The historical realization is shown in brown color and the black squares 

show the annual average calculated using PRMS inputs (1970-2016). In the context of this comparison, the latter is 

considered being the ‘truth’, although the time periods used by each model vary. 

Figure 3-22 illustrates the comparison results between NCAR-WG and CliWxGen in regards with 

variability of the precipitation variable. Variability at both annual and monthly scales is analyzed. Results 

show that simulations from NCAR-WG tend to overestimate the variability of the annual precipitation. It 

is noted for instance that the variability of the historical annual precipitation (black squares in Figure 3-22, 

left) is below the lower inter-quartile of the annual precipitation distribution across the ensemble of 30 

realizations for each forcing GCM. The nine stochastic realizations from CliWxGen are closer to the 

historical value. Some slightly overestimate while some slightly underestimate the inter-annual variability 
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of the historical precipitation. As an ensemble, the nine stochastic realizations represent correctly the 

inter-annual variability of the annual historical precipitation across the Upcountry region. 

The results of the comparison for the monthly temporal scale is significantly different than the one 

discussed for the annual scale. It is noted that simulations from NCAR-WG significantly overestimate the 

variability of the monthly precipitation across the region. On the other hand, the stochastic realizations 

from CliWxGen underestimate the precipitation variability at monthly scale. Note that the historical 

realization (brown) is close to the historic precipitation. A similar results is obtained a daily temporal 

scale, although not shown in this report.  

 

Figure 3-22. Comparison of the standard deviation of the simulated precipitation across the Upcountry region 

(average of 9 stations). Left: annual temporal scale. Right: monthly temporal scale. See Figure 3-21 for more 

caption details. 
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4. East Bay region 

4.1. Hydro-meteorological context  
Three sub-watersheds of the Alameda Creek watershed (Figure 4-1) have been modeled for the need of 

the long term vulnerability assessment of the Hetch Hetchy Regional Water System (HHRWS); the 

Arroyo Hondo watershed (77.1 mi2), the Upper Alameda Creek watershed (aka Alameda Creek Diversion 

Dam watershed or ACDD; 33.3 mi2), and San Antonio watershed (37 mi2). Flows from each of these 

catchments are collected, at least partially for ACDD, by SFPUC owned facilities; the Calaveras reservoir 

for Arroyo Hondo, the Alameda Creek diversion dam for ACDD watershed (which diverts water to the 

Calaveras Reservoir), and the San Antonio reservoir for the San Antonio watershed. Note that the Arroyo 

Hondo watershed outlet, which is the USGS gage 11173200, is located upstream the Calaveras reservoir.  

 

Figure 4-1. Alameda hydrologic region subwatersheds. Subwatershed outlets are shown as black dots. 

Despite the relatively small size of the East Bay region, precipitation vary considerably within the region 

due to a sharp gradient in elevation (ranging from few dozen of feet above sea level to nearly 4,400 feet at 

the top of the Mont Hamilton). Rainfall regime is strongly seasonal with most of the rainfall events 

occurring during the Fall and Winter seasons, followed by a pretty consistent meteorological drought 

extending from late April through September (Figure 4-2). In addition, precipitation during fall and winter 

months highlight strong inter-annual variability. For instance, Figure 4-2 illustrates that observed rainfall 

during winter months (i.e., December, January, February) at Calaveras and Sunol stations range from null 

values to more than 250 mm (i.e., 9.8 inches), while the interquartile spans from +/- 50m from the 

monthly mean. 
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Figure 4-2. Rainfall climatology (1956-10-01→2011-09-30) at Calaveras (left) and Sunol (right) rain gages. Bold 

black curves show the average monthly rainfall (mm). The gray areas show the deviation between the quantiles 75 

and 25 of the monthly rainfall. Dash black curves show the minimum and maximum monthly rainfall for the period. 

Given the significant rainfall variability above described, streams are dry during the summer drought 

period while flash floods occur frequently during winter months due to convective storms passing through 

the region and hitting the elevation ranges of the basin.  

Figure 4-3 illustrates the hydrological regimes observed across the three watersheds and the significant 

inter-annual variability (cf. the difference between a wet year (i.e., water year 1998) and a dry year (i.e., 

water year 2007)). Note that snow pack dynamic has no influence in the region. 

  

 

 

Figure 4-3. Streamflow climatology at Arroyo Hondo 

USGS station (#11173200) (top left), ACDD (top right) 

and San Antonio (bottom left). Similar to Figure 4-2, 

bold black curves show the average monthly flow (mm). 

The gray areas show the deviation between the quantiles 

75 and 25 of the monthly flow. Dash black curves show 

the minimum and maximum monthly flow for the period.  
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4.2. SACramento Soil Moisture Accounting model (SAC-SMA)  
For each of the three sub-watersheds in the East Bay region, a distributed version of the Sacramento Soil 

Moisture Accounting (SAC-SMA model; Anderson and McDonnell, 2005) model was built to generate 

inflows at their outlet. The SAC-SMA model is a well-known conceptual hydrology model that has been 

used for flood forecasting by the National Weather Service. It is often considered to benchmark model 

performance, such as for the CAMELS project in United-States (e.g., Newman et al. 2015). While a 

distributed version of SAC-SMA is used to model the considered East Bay catchments, the performance 

of the lumped SAC-SMA when compared to other hydrologic models across the United States is deemed 

average (Brunner et al. 2020; Kratzert et al. 2020). However, Brunner et al. (2020) show that SAC-SMA 

simulated peak flows are strongly related to precipitation, which, given the flashy feature of the 

considered catchments, makes SAC-SMA suitable for modeling the hydrology in East Bay region. In 

addition, the coupling between SAC-SMA and the Lohmann et al. (1978) river routing model makes 

SAC-SMA fully distributed and suitable for the topographic and climatic heterogeneity of the region. We 

use the acronym SAC-SMA-DS to refer to the distributed version of this coupled model. In addition to 

the Lohmann river routing model, SAC-SMA-DS consists of modules representing soil moisture 

accounting, evapotranspiration and runoff routing through a Nash-cascade unit hydrograph, depicted in 

Figure 4-4. Potential evapotranspiration (PET) in the SAC-SMA-DS method is calculated using the 

Hamon method, which uses daily mean temperature and daylight hours to determine daily PET. For river 

channel routing, the linearized Saint-Venant Equation is used. Appendix A includes further details, 

including equations and references. 

 

Figure 4-4. Schematic of the distributed Sacramento Soil Moisture Accounting model (SAC-SMA-DS). Note that the 

Snow-17 module (Anderson, 2006) is turned-off as snowpack dynamic has no influence in East Bay region. 



50 

 

4.3. Meteorological forcing  

4.3.1. Precipitation 

Given the significant gradient in elevation within the East Bay region, the rainfall is expected to vary 

significantly through space, although the rain gages with long records are sparse through the catchment, 

and thus, are not likely catching this variability. Three rain gages with long temporal records have been 

identified through the construction of the stochastic weather generator CliWxGen (HRG TR1, 2018); they 

are Calaveras, Sunol and Mont Hamilton rain gages. To assess whether the spatial coverage from the 

three rain gages is enough to represent the rainfall variability across the considered catchments, the high-

resolution (~4 km2) PRISM gridded dataset was used (http://prism.oregonstate.edu/). The result of this 

analysis is illustrated in Figure 4-5. 

 

Figure 4-5. Monthly long term average of the PRISM precipitation (1981-2015). Monthly precipitation are 

indicated in mm (color bar). Each dot represents the monthly precipitation obtained for a PRISM grid cell within 

the simulated watersheds. PRISM spatial resolution is nearly 4km2. The location of the three rain gages with long 

term records that are used by the weather generator CliWxGen are indicated with green symbols. 

http://prism.oregonstate.edu/
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Figure 4-5 illustrates the long-term monthly precipitation cumuli at 4km2 resolution from PRISM dataset. 

Only the PRISM grid cells within the considered catchments are illustrated. Two main results can be 

drawn out of this figure. First, the variability of the precipitation is significant across the region, as 

expected given the gradient in elevation. The precipitation variability through space is especially 

important during the raining season (i.e, during fall and winter months). For instance, precipitation across 

the San Antonio reservoir appear to be significantly lower than the one across the Arroyo Hondo and 

ACDD catchments. The variability within the Arroyo Hondo and ACDD catchments is also important, 

with high elevation (i.e., where the Mont Hamilton rain gage is) receiving more water than the lower part 

of the Arroyo Hondo catchment or even the upper region of the ACDD catchment. The second result one 

can draw out of the figure is that the three available rain gages, illustrated with green symbols in Figure 

4-5, do not capture well the observed variability within PRISM dataset. 

When reliable gage observations are available, they are commonly deemed more trustful than any 

interpolation-based gridded dataset such as PRISM. However, it seems important to account for the 

spatial distribution of the rainfall across the region, which, given the available stations, is not possible. 

For doing so, the observation at the gages were used to estimate the precipitation at the PRISM grid cell 

level by mean of a scaling factor that accounts for the difference in long-term averages between the 

PRISM grid cell where the rain gage is, and the PRISM grid cell where one want to estimate the rainfall: 

 
𝑃𝑘(𝑡) = 𝑃𝑖𝑘

(𝑡)
𝑃𝑅𝐼𝑆𝑀𝑗𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑚(𝑡))

𝑃𝑅𝐼𝑆𝑀𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑚(𝑡))

, 
4-1 

with 𝑃𝑘(𝑡)  the estimated precipitation for the day 𝑡  at the PRISM grid cell 𝑘 , 𝑃𝑖𝑘
 the precipitation 

measured at the gage 𝑖 being the closest to the PRISM grid cell 𝑘 (𝑖 could be any of the available rain 

gage). The Euclidian distance using the latitude and longitude coordinate is used to find the closest station 

and/or grid cell 1 .  𝑃𝑅𝐼𝑆𝑀𝑗𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑚(𝑡))  and 𝑃𝑅𝐼𝑆𝑀𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑚(𝑡))  are the long-term averages (i.e., 1981-2015) 

precipitation obtained from PRISM for the grid cells 𝑗𝑖 and 𝑘 and for the current month 𝑚. Note that the 

grid cell 𝑗𝑖 is the PRISM grid cell that in which the gage 𝑖𝑘 is located. The use of the ratio between the 

PRISM precipitation at the gage location and at the grid cell where the precipitation is estimated is 

justified by the pretty good representation of the long-term precipitation at the gage by the PRISM 

dataset, as illustrated in Figure 4-6. Only the precipitation during the wetter months at Mont Hamilton 

seems slightly overestimated by PRISM. For the Calaveras and Sunol gages, the match is very good for 

all months. 

 
1 As discussed further down in the section, the rain gage at Mont Hamilton was disregarded. As such, SAC-SMA-

DS  models for Arroyo Hondo and ACDD sub-watersheds only used Calaveras rain gage. For San Antonio sub-

watershed, 4 out of 12 PRISM grid cells were assigned with Sunol rain gage, while the remaining 8 grid cells were 

assigned with Calaveras rain gage. 
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Figure 4-6. Comparisons between long term average monthly precipitation at each rain gage and PRISM 

precipitation. Each dots represent one month. 

Note that during the revision of the LTVA and hydrology reports, discussion with SFPUC personnel leads 

to disregard the Mont Hamilton station for two reasons. First, as illustrated in Figure 4-7, a significant 

trend in annual precipitation is observed at Mont Hamilton station. This trend is questionable because no 

trend is observed at Calaveras and Sunol gages. Second, the presence of such trend is not compatible with 

the CliWxGen stochastic weather generator that, by construction, requires stationary rainfall time series. 

 
Figure 4-7. Annual precipitation observed at Calaveras (red), Sunol (green) and Month Hamilton (blue) gages. 

Annual values are given in mm. Colored dash curves show linear trend obtained for each station. 

4.3.2. Temperature 

A comparison between the available temperature stations across the region and the Livneh et al. (2013) 

gridded dataset (aka CONUS) has been carried out during the development of the CliWxGen stochastic 

generator. It has been found that CONUS dataset represents well enough the temperature across the 

region. Following this development and findings, it has been decided in agreement with SFPUC 

personnel to use CONUS temperature gridded dataset as input to SAC-SMA-DS model. More details 

regarding this comparison is available in Section 2.1 of the Weather Generator report (HRG TR1, 2018). 

The temperature from the CONUS grid elevation is adjusted to the PRISM grid elevation using a 

temperature lapse equal to 6.2oC /km. 
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4.4. Model calibration across the three considered East Bay catchments 
This section presents the results of the calibration/validation of SAC-SMA-DS model at the outlet of 

Arroyo Hondo, ACDD and San Antonio sub-watersheds. The calibration of SAC-SMA-DS model 

parameters was carried out using the Genetic Algorithm described in Appendix E. The objective function 

for the calibration is the Kling-Gupta Efficiency (KGE; Gupta et al. 2009) obtained from the daily 

simulated and observed runoff time series. The calibration and validation periods shown in Table 4-1 

have been chosen given i) the availably of the observed/reconstructed discharges and ii) the goal of 

keeping dry conditions during the validation period to check whether the calibrated model parameters are 

able to correctly represent dry years. Note that the most recent drought between fall 2011 and fall 2015 

could not be included in the calibration/validation of any model because the temperature forcing dataset 

ends in 2011. 

Arroyo Hondo model was calibrated over the most recent period (i.e., from 1995/10/01 to 2011/09/30) 

and validated across an older period (i.e., from 1969/10/01 to 1982/09/30). The validation period includes 

the 1976-1977 drought, which provides a good test-bed to validate the Arroyo Hondo model during dry 

conditions. Note that because no observed discharge is available in-between 1982 and 1995, this period 

could not be used for calibration/validation. The time period for which observed/reconstructed discharge 

time series at the outlet of the ACDD and San Antonio sub-watersheds is significantly shorter and only 

includes the recent period spanning from 1996/10/01 to 2011/09/30. For both catchments, the calibration 

was carried out through the period 1996/10/01 to 2006/09/30, leaving the period 2006/10/01 to 

2011/09/30 for validation. This split has the advantage of having the driest year of the available record 

(i.e., water year 2007) for validation, which helps ensuring that calibrated models are able to reproduce 

dry conditions. 

Table 4-1. Calibration and validation period used for each catchment in East Bay region 

Basin name Area (square 

mile) 

Calibration period Validation period Objective 

function 

Nature of the target 

Arroyo 

Hondo 

77.1 1995/10/01 → 

2011/09/30 

1969/10/01 → 

1982/09/30 

KGE USGS gage number 

11173200 

ACDD 33.3 1996/10/01 → 

2006/09/30 

2006/10/01 → 

2011/09/30 

KGE Reconstructed by 

SFPUC 

San Antonio 37 1996/10/01 → 

2006/09/30 

2006/10/01 → 

2011/09/30 

KGE Reconstructed by 

SFPUC 

Calibration and validation results are illustrated below using two set of figures and one set of tables. 

Figure 4-8, Figure 4-10 and Figure 4-12 summarize the performance for Arroyo Hondo, ACDD and San 

Antonio watersheds, respectively. These figures are collection of four plots; a) the daily observed and 

simulated runoff time series obtained during calibration and validation periods; b) the observed and 

simulated annual time series during calibration and validation periods; c) a scatter plot of the monthly 

simulated versus observed runoff; and d) the flow duration curves of the observed and simulated runoff. 

These plots are further used below to illustrate the performance of the SAC-SMA-DS models at the daily, 

monthly and annual time scales. Figure 4-9, Figure 4-11 and Figure 4-13 are used to illustrate for each 

water year the match between the observed and simulated time series for each catchment. Performance 

metrics, including the KGE and NSE estimated for both daily and monthly temporal scales, together with 
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the percent bias, are given in Table 4-2, Table 4-3 and Table 4-4 for Arroyo Hondo, ACDD and San 

Antonio sub-watersheds, respectively. 

4.4.1. Arroyo Hondo 

The performance of the SAC-SMA-DS model at the Arroyo Hondo gage is very good. Daily NSE and 

KGE criteria are high (i.e., larger than 0.69 and larger than 0.84 respectively). The model is not biased 

with even less than 5% bias obtained for the validation period. We also note a good performance at 

reproducing the dry years during the validation period (i.e., 1972, 1976 and 1977). However, the model 

tends to underestimate the peak discharge, which is common for small and flashy basins. Higher temporal 

resolution (i.e., hourly) could be require to better reproduce peak flows. Overall, based on the various 

performance criteria, the model performance is satisficing for the need of the LTVA. 

 
Figure 4-8. Calibration results for the Arroyo Hondo watershed. a) Comparison of the daily observed (black) and 

simulated time series during calibration (blue) and validation (red) period. Nash-Sutcliffe (NSE) and Kling-Gupta 

(KGE) efficiency and the percent bias (Pbias, %) are given for the calibration, validation and the entire periods; b) 

Same as a) but for the annual scale (i.e., water year from 10/01 to 09-30). The data point for the WY XXXX is 

located at the date 09/30/XXXX; c) Scatter plot showing the monthly simulated vs. observed discharges. Calibration 

and validation periods are illustrated in blue and red color respectively. d) Simulated (blue) and observed (black) 

flow duration curve. Here, the simulated flow duration curve include both calibration and validation periods. 

Table 4-2. Summary of the SAC-SMA-DS performance for the Arroyo Hondo sub-watershed. Nash-Sutcliffe and 

Kling-Gupta efficiencies are given for both daily and monthly temporal scales. 

 NSE_daily KGE_daily Pbias(%) NSE_monthly KGE_monthly 

Full period 0.75 0.87 1.70 0.83 0.87 

Calib (1996/10/01→2011/09/30) 0.79 0.89 0.18 0.93 0.96 

Valid (1969/10/01→1981/09/30) 0.69 0.84 4.10 0.84 0.91 

 

a) 

b) 

c) d) 
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Figure 4-9. Comparison of the observed (black) and simulated flow at the outlet of Arroyo Hondo catchment. Blue 

and red curves are used to highlighted calibration and validation periods. Only November through early May 

periods are shown for each water year to increase readability of the figure.  

4.4.2. ACDD 

Similar to Arroyo Hondo sub-watershed, SAC-SMA-DS performance is high for the ACDD sub-

watershed. Daily NSE and KGE are respectively larger than 0.78 and 0.82 for both calibration and 

validation periods. The percent bias is low for calibration and the whole periods (0.86% and 3.85% 

respectively) but it is larger for the validation period (i.e., 13.4%). This rather large bias during the 

validation period seems to result from the water year 2010 (Figure 4-11), which could follow from an 

overestimation of the precipitation during this year. However, since the driest year (i.e., WY2007) is well 

reproduced, the model is expected to represent sufficiently well the streamflow conditions during dry 
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years. Given the calibration and validation results, the model at ACDD is deemed satisfying for the need 

of the LTVA. 

 
Figure 4-10. Same as Figure 4-8 but for ACDD sub-watershed. 

Table 4-3. Summary of the SAC-SMA-DS performance for the ACDD sub-watershed. Nash-Sutcliffe and Kling-

Gupta efficiencies are given for both daily and monthly temporal scales. 

 NSE_daily KGE_daily Pbias(%) NSE_monthly KGE_monthly 

Full period 0.80 0.89 3.85 0.95 0.90 

Calib (1996/10/01→2006/09/30) 0.81 0.90 0.86 0.95 0.92 

Valid (2006/10/01--→2011/09/30) 0.78 0.82 13.40 0.91 0.80 

 



57 

 

 

Figure 4-11. Comparison of the observed (black) and simulated flow at the outlet of ACDD catchment. Blue and red 

curves are used to highlighted calibration and validation periods. Only November through early May periods are 

shown for each water year to increase readability of the figure. 

4.4.3. San Antonio 

Similar to the Arroyo Hondo and ACDD sub-watersheds, SAC-SMA-DS model performance is very 

good with daily NSE and KGE larger than 0.8 and 0.84 for both calibration and validation periods. 

Overall bias is low with, however, a slightly larger value obtained for the validation period (i.e., 12.4%), 

which, similarly to ACDD, seems to mostly result from the water year 2010. The performance during the 

dry water year 2007 is also very good, giving confidence that the model represents correctly the dry years. 
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Figure 4-12. Same as Figure 4-8 but for San Antonio sub-watershed. 

Table 4-4. Summary of the SAC-SMA-DS performance for the San Antonio sub-watershed. Nash-Sutcliffe and Kling-

Gupta efficiencies are given for both daily and monthly temporal scales. 

 NSE_daily KGE_daily Pbias (%) NSE_monthly KGE_monthly 

Full period 0.82 0.90 4.55 0.96 0.92 

Calib (1996/10/01→2006/09/30) 0.83 0.91 2.11 0.96 0.93 

Valid (2006/10/01→2011/09/30) 0.80 0.84 12.40 0.93 0.86 
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Figure 4-13. Comparison of the observed (black) and simulated flow at the outlet of San Antonio catchment. Blue 

and red curves are used to highlighted calibration and validation periods. Only November through early May 

periods are shown for each water year to increase readability of the figure. 

4.5. SAC-SMA-DS simulations forced by the stochastic weather realizations 
This section presents the results of the SAC-SMA-DS simulations when forced by the output of the 

CliWxGen weather generator. First, the forcing dataset (i.e., simulated temperature and precipitation time 

series) obtained through the weather generator are compared with the observed weather variables to detect 

any potential bias. Results show a minor bias in precipitation, which has been corrected prior forcing the 

SAC-SMA-DS model (Section 4.5.1). Second, the bias in runoff variables are discussed for the three sub-

watersheds (Section 0). 

4.5.1. Bias correction of the weather generator outputs 

Figure 4-14 illustrates for Arroyo Hondo (top), ACDD (middle) and San Antonio (bottom) the relative 

deviation in average between the stochastic realizations obtained from the weather generator CliWxGen 

and the historical weather. The description of the nine realizations can be found in the technical report 

describing the weather generator CliWxGen (HRG TR1, 2018). Note that in Figure 4-14, precipitation 

and temperature time series used to estimate the deviation between stochastic and historical time series 

are average across each basin after the pre-processing detailed in Section 4.3.  
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Figure 4-14. Comparison between the SAC-SMA-DS forcing dataset for the LTVA with the historical forcing 

dataset. Black dots show for each realization (x-axis) the average deviation between the historical record for the 

precipitation (left column) and temperature (right column) variables and the raw output of the weather generator 

CliWxGen mapped to the PRISM grid cells (see Equation 4-2). Blue dots show the deviations from the historical 

obtained with the bias corrected realizations. The y-axis show the deviation from the historical values, relative for 

precipitation and absolute (in oC) for temperature. 

Two main results are drawn out from Figure 4-14. First, none of the nine stochastic realization is biased 

regarding the temperature variable (right column). The largest deviation from the historical average is 

lower than 0.15oC, which is negligible. Second, all stochastic realizations show a dry bias ranging from 1 
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to 2.5% reduction when compared to the historical average. The bias is rather consistent across all three 

sub-watersheds. To ensure that overall, the baseline used for the climate stress test have a similar long-

term precipitation average than the historical record, the weather generator precipitation output must be 

corrected prior altering their average throughout the climate stress test. 

Let us recall that the weather generator CliWxGen outputs precipitation time series at the Calaveras and 

Sunol gage locations. Let us refer to these time series as 𝑃𝑖,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛 (i being an index to either refer to 

Calaveras or Sunol rain gage). The precipitation time series from the weather generator are first mapped 

to the each PRISM grid k using Equation 4-1, which becomes: 

 
𝑃𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛(𝑡) = 𝑃𝑖𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛(𝑡)

𝑃𝑅𝐼𝑆𝑀𝑗𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑚(𝑡))

𝑃𝑅𝐼𝑆𝑀𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑚(𝑡))

, 
4-2 

with similar notation as the ones used for Equation 4-1. The precipitation time series from the weather 

generator mapped to the each PRISM grid cell k are then corrected by multiplying their daily values 

𝑃𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛(𝑡) by a correction factor 𝑏𝑤 that is specific to each sub-watershed w. Note that for a given 

sub-watershed w, the correction factor 𝑏𝑤 is common across all realizations:  

 𝑃𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛,𝑐𝑜𝑟𝑟(𝑡) = 𝑏𝑤𝑃𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛(𝑡), 4-3 

with 𝑃𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛,𝑐𝑜𝑟𝑟 the bias corrected precipitation time series obtained from the weather generator and 

mapped to the PRISM grid cell k. Bias correction factors 𝑏𝑤 for the sub-watershed w is estimated from 

the deviations illustrated in Figure Figure 4-14 (left column) betweeh the historical precipitation (red line) 

and the raw weather generator output mapped to the PRISM gridd cells (black dots): 

 
𝑏𝑤 =

𝑃𝑘
̅̅ ̅(𝑡)

𝑃𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

, 𝑓𝑜𝑟 𝑘 є 𝑤  
4-4 

with 𝑃𝑘(𝑡) the estimated precipitation for the day 𝑡 at the PRISM grid cell 𝑘 (obtained from Equation 

4-1). In Equation 4-4, the average of the precipitation from the weather generator mapped to the PRISM 

grid cells 𝑃𝑘,𝐶𝑙𝑖𝑊𝑥𝐺𝑒𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is calculated across all nine stochastic realizations. The bias correction factors are 

given in Table 4-5 for each sub-watershed. 

Table 4-5. Bias correction factors to be multiplied with the precipitation time series obtained from Equation 4-1. 

Arroyo Hondo San Antonio ACDD 

1.017 1.014 1.017 

 

4.5.2. SAC-SMA-DS simulations for the LTVA 

The long-term averages of observed and simulated runoff are compared in Table 4-6. The average 

monthly cycles are illustrated in Figure 4-15. It is important to recall that long-term averages and average 

cycles presented below are obtained for different time periods, which might explain some differences. 

The averages for the observed historical records vary from one catchment to another (cf. periods in Table 

4-6 caption). For all three sub-watersheds, the length is significantly shorter than the period for which 

runoff are simulated with SAC-SMA-DS forced by the stochastic realization. The long-term averages for 

the simulated historical is obtained for the period spanning from 1956/10/01 to 2011/09/30. As described 

in the weather generator technical report (HRG TR1, 2018), each of the nine stochastic realization is 50-
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year long and has been obtained from simulation of the CliWxGen model that has been built using the 

observed weather from 1956/10/01 to 2011/09/30. Although each realization has been obtained through 

use of resampling approaches, which introduce somewhat randomness, they should be representative of 

this period; the deviation from one realization to another is deemed noise stemming from climate 

variability and sampling uncertainty. 

For Arroyo Hondo, both observed and simulated historical long-term averages fall within the range of 

long-term averages obtained from the ensemble of 9 realizations. When compared to the observed 

historical, one may note a slight wet bias that averaged out to 1.2%. On can also note that the average 

simulated runoff peak during the rainy season is larger than the one from the historical record. This 

difference could be explained by the fact that the wetter year (i.e., 1984), together with some other wet 

years (i.e., 1959 and 1983) are not present in the historical runoff record, although they are used by the 

weather generator, and are thus somewhat included within the 9 stochastic realizations. 

For San Antonio sub-watershed, one can note that the long-term averages obtained with the nine 

stochastic realizations are slightly larger than the observed historical long-term average. The positive bias 

ranges from 1.2% (realization #3) to 9.2% (realization 6). The average bias across realization equals 

4.8%. This positive bias could be explained by the shorter observed historical period. As the historical 

record is short (i.e., 19 years) its long-term average may be more sensitive to low frequency climate 

variability. As such, the number of dry years within the observed historical time series, including the start 

of the most recent drought (i.e., 2011 through 2014), might introduce a dry bias into the long-term 

average historical estimate when compared to its theoretical true (but unknown) value that could be better 

estimated using a longer record. Also, three out of the four wettest years on record are prior 1996 (i.e., 

water years 1959, 1982, 1983 as seen in Figure 4-7). As such, it is expected that some years from the 

ensemble of 9 realizations to have larger streamflow values than the ones reconstructed at the San 

Antonio catchment outlet, which could also contribute to explain the apparent positive bias when 

compared to the 1996-2014 historical record.  

For ACDD, a similar result than for San Antonio sub-watershed is observed. In this case, the positive bias 

obtained from the 9 realization ranges from 3.2% to 9.7% (with an average equal to 5.8%).   

The above assumption that the long-term averages obtained for San Antonio and ACDD sub-watersheds 

are potentially underestimating the true value is supported by the fact that the model does not 

overestimate the runoff at Arroyo Hondo sub-watershed, for which the historical long-term average 

estimate was obtained using a longer period (i.e., 35 years). 

Table 4-6. Long-term averages for observed runoff (‘Observed historical’), simulated runoff forced with historical 

weather (‘Simulated historical’) and simulated runoff forced with the stochastic weather realizations (indexed from 

1 through 9). Runoff values are given in mm. Note that ‘Historical’ averages are given for the longest available 

period (i.e., 1969/10/01→ 2018/09/30 for Arroyo Hondo (with missing values from 1981/10/01 to 1995/09/30); 

1995/10/01→ 2013/09/30 for San Antonio; 1995/10/01→2014/09/30 for ACDD). The period used for simulated 

historical is the one used to generate the stochastic realization (i.e., 1956/10/01 → 2011/09/30). 

Realization id Arroyo Hondo San Antonio ACDD 

Observed historical 0.576 0.223 0.552 

Simulated historical 0.574 0.227 0.573 
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1 0.576 0.229 0.581 

2 0.609 0.244 0.606 

3 0.567 0.226 0.570 

4 0.586 0.234 0.588 

5 0.575 0.230 0.578 

6 0.571 0.231 0.573 

7 0.598 0.241 0.597 

8 0.576 0.227 0.579 

9 0.589 0.234 0.590 
 

Regarding the seasonal cycles illustrated in Figure 4-15, their representation is fairly good for all three 

sub-watersheds. One may notice, however, that simulated dry period starts and ends earlier than in the 

historical records. This difference could be explained by several factors that have not been thoughtfully 

investigated because deemed not critical for the performance of the LTVA. Note that difference is only 

about few mm which represents, given the size of the sub-watersheds, a tiny fraction of the annual runoff. 

 
Figure 4-15. Comparison of the observed historical (black) and LTVA simulated (grey) runoff for each sub-

watershed. All nine SAC-SMA-DS simulations driven by the weather generator outputs are represented in this figure 

(grey curves). Runoff is given in mm.  

4.6. Generation of the input for the San Francisco Water System Model  
Note first that the San Francisco Water System Model (SFWSM) uses acre feet by day (AF/day) as unit. 

As such, everything single SAC-SMA-DS outputs is converted from mm to AF/day. 

4.6.1. Runoff for the ungagged sub-watersheds 

In addition to the streamflow time series simulated at the outlet of the Arroyo Hondo, ACDD and San 

Antonio sub-watersheds, SFWSM may require up to two additional runoff time series.  

One required time series is for the intermediate watershed in-between the Arroyo Hondo gage, where the 

SAC-SMA-DS model is calibrated, and the Calaveras reservoir. Following discussion with SFPUC 

personnel, runoff from this intermediate sub-watershed is obtained by scaling the simulated time series at 

Arroyo Hondo by an adjustment factor equal to 0.21. In other word, the actual runoff entering Calaveras 
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reservoir (not accounting from the diversion from ACDD tunnel) equals 1.21 times the simulated runoff 

at the Arroyo Hondo gage.  

The second time series is optional and is only required for the SFWSM version that accounts for the 

Recapture Alameda Creek project. In this case, a time series of runoff is required to represent the 

contribution from the catchment in-between the Calaveras reservoir and the pit F2 entrance. Following 

discussion with SFPUC personnel, it has been decided to scale the simulated time series at the San 

Antonio reservoir by the ratio of the catchment areas. This ratio was found to be equal to 0.975. 

4.6.2. Evaporation and precipitation over Calaveras and San Antonio reservoirs 

SFWSM requires precipitation and evaporation rates over the reservoirs. The simulated potential 

evapotranspiration by SAC-SMA-DS and the precipitation at the grid cell that includes the outlet of the 

Arroyo Hondo and San Antonio sub-watersheds were outputted for that purposed. 

 

4.7. SAC-SMA-DS simulations forced by the stochastic weather generator climate 

stress test  

 

 

 
Figure 4-16 Total annual stream flow (acre-feet) under temperature and precipitation changes respectively for San 

Antonio Reservoir, Alameda Creek Diversion Dam, and Arroyo Hondo sub-watersheds. The yellow and green dots 

over the response surface shows CMIP5 projections under RCP 8.5 for two 30-year long periods: 2040 (2026-2055) 

and 2070 (2056-2095).  Baseline is 1986-2005.  Historic mean observed is shown in white and follows the dashed 

line. 
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Figure 4-16 shows the total annual stream flow under temperature and precipitation changes.  The higher 

precipitation generates more flows while higher temperature produces less flows. This change is due to 

additional water collected in the watershed from precipitation events and more evapotranspiration due to 

increase in temperature.   Being a smaller watershed than the Upcountry region, changes in 

evapotranspiration has a larger impact on the annual streamflow.  Results below are presented for inflow 

at Calaveras reservoir (Arroyo Hondo) the largest watershed in the East Bay. 

• By 2040, the median projections of +2°C warming combined with 0% change in mean 

annual precipitation results in 9% reduction in mean annual inflow.  

• By 2040, most projections and elicitations of warming are between +1°C and +4°C and 

for precipitation change between -5% and +5% which would correspond to a maximum 

change in mean annual inflow between a decrease of 27% and an increase of 7%.  

• By 2070 RCP 8.5, the median projections of about +4°C combined with 0% change in 

mean annual precipitation results 17% decrease in mean annual inflow. Most projections 

and elicitations of warming range between +3°C and +6°C and of precipitation change 

between -15% and +15% resulting in change in mean annual inflow between a decrease 

of 50% and an increase of 33%.  

 

5. Peninsula Hydrologic Model 

5.1. Introduction 
The Peninsula Watershed, almost completely owned by the SFPUC, is located south of the City of San 

Francisco in central San Mateo County. The Watershed contains three reservoirs, San Andreas, Crystal 

Springs and Pilarcitos. In addition to serving as storage facilities for the water draining the Peninsula 

Watersheds, these reservoirs also store water from the Upcountry system. 

The Peninsula watershed has the area of 23,000 acres, located in the central San Mateo County and at the 

South of San Francisco City and County (shown in Figure 5-1) (San Francisco Planning Department, 

2001).  
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Figure 5-1 Peninsula watersheds 

5.1.1. Geology and soils 

The Peninsula watershed belongs to the natural region of California where there are northwest-trending 

faults, mountain ranges, and valleys as consequences from geologically complex and seismically active 

zone. (San Francisco Planning Department, 2001) 

The lowest elevation in the Peninsula watershed is about 300 feet above mean sea level (msl) along the 

shoreline of Crystal Springs reservoir. The highest elevation is around 1,900 feet above msl at the crest of 

Montara Mountain (at North Peak and Scarper Peak) and over 2,000 feet above msl near Kings Mountain. 

Northern slopes are approximately steeper than southern slopes (San Francisco Planning Department, 

2001). 

Pilarcitos Fault shown in the Figure 5-2 divides the Peninsula watershed into two parts (west and east). In 

the west, soils are underlain by granitic rocks and sedimentary rocks. These soils drain well, and their 

depths vary from shallow to deep. They can be erosive dramatically. In the east, soils are underlain by the 

varied rocks of the Franciscan complex and the Butano Sandstone. Their characteristics are the same as 

soils in the west (San Francisco Planning Department, 2001). 
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Figure 5-2 Map of the Peninsula showing major faults in the northern Santa Cruz Mountains in San Mateo County. 

Stops include: A) I-280 Vista Point, 1) Filoli Center, 2) Pulgas Water Temple, 3) Crystal Springs Dam, 4) I-280 Rest 

Area, 5) Milagro Ridge, 6) Mussel Rock Park, 7) Pacifica Quarry, 8) San Pedro Mountain and Devil's Slide, 9) 

Montara Mountain, 10) Montara Beach, 11) James V. Fitzgerald Marine Preserve, 12) Half Moon Bay Airport, and 

13) Pillar Point and Mavericks (The United States Geological Survey, 2005). 

5.1.2. Hydrology 

There are three main creeks in the Peninsula watershed. They are San Mateo, Pilarcitos, and San Andreas 

creeks, which are natural drainages for this watershed. Nevertheless, the watershed also has artificial 

drainage systems from San Francisco Public Utilities Commission (SFPUC). Three major drainage areas 

include (1) Upper and Lower Crystal Springs reservoirs, (2) Pilarcitos reservoir and Creek, and (3) San 

Andreas reservoir (San Francisco Planning Department, 2001). However, in order to provide system 

model inflows at important discharge gauges, this study decides to delineate the Peninsula watershed into 

five sub-watersheds which are San Andreas reservoir watershed, San Mateo Creek watershed, Pilarcitos 

reservoir watershed, Stone Dam watershed, Crystal Springs reservoir watershed relating to five discharge 
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gauges with the same names (shown in Figure 5-3). Table 5-1 gives the summary of these discharge 

gauges. 

Table 5-1 Discharge gauges in the Peninsula watershed 

Full name Short name Used to 

delineate 

Outlet to sub-

watershed 

Latitude Longtitude 

San Mateo 

Creek at Mud 

Dam 1 

San Mateo 

Creek 

YES San Mateo 

Creek 

37.55668778 -122.4180597 

San Mateo 

Creek below 

the junction 

box 

San Mateo 

Creek below 

the junction 

box 

NO  37.556247 -122.418027 

 

Filoli Main 

Bridge above 

Upper Crystal 

Springs 

Filoli Main 

Bridge 

NO  37.476412 -122.312184 

Crystal 

Springs 

reservoir 

Inflow by 

Mass Balance 

Crystal 

Springs 

reservoir 

YES Crystal 

Springs 

reservoir 

37.528917 

 

-122.362348 

 

San Andreas 

reservoir 

Inflow by 

Mass Balance 

San Andreas 

reservoir 

YES San Andreas 

reservoir 

37.580239 

 

 

-122.411845 

 

Pilarcitos 

Creek above 

Stone Dam 

Stone Dam YES Stone Dam 37.527173 -122.398355 

Pilarcitos 

reservoir 

Pilarcitos 

reservoir 

YES Pilarcitos 

reservoir 

37.54805556 -122.4286111 
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Figure 5-3 Peninsula watershed with five sub-watersheds including San Andreas reservoir watershed, San Mateo 

Creek watershed, Pilarcitos reservoir watershed, Stone Dam watershed, Crystal Springs reservoir watershed having 

the outlets at five discharge gauges with the same name representing in blue points on the map. Two discharge 

gauges Filoli Main Bridge and San Mateo Creek below the junction box are not used in the watershed delineation, 

representing in pink points on the map. The discharge gauge "San Mateo Creek below the junction box" is adjacent 

to the discharge gauge "San Mateo Creek" so that it does not appear on the map. 

The Peninsula watershed was protected from the urbanization because of its collection and storage 

function. Four reservoirs (Pilarcitos reservoir, San Andreas Dam reservoir, Upper Crystal Springs 

reservoir, and Lower Crystal Springs reservoir) were constructed respectively in 1864, 1870, 1877, and 

1890 in order to store water in the Peninsula watershed (San Francisco Planning Department, 2001). Five 

sub-watersheds contain reservoirs as their names; for instance, San Andreas Reservoir watershed has San 

Andreas Reservoir. Only San Mateo Creek watershed contains flows from San Mateo Creek, not a 

reservoir. 

Aside from local runoff originated within the Peninsula watershed, water from Hetch Hetchy system 

blended with treated water from the Alameda Watershed is conveyed through Bay Division Pipelines to 

Crystal Springs reservoir and then flows to San Andreas reservoir. Some of the water in Pilarcitos 

reservoir is conveyed to the Coastside County Water District (CCWD). Surplus water from Pilarcitos 
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reservoir is transfered to San Andreas or Crystal Springs reservoirs. Water in San Andreas and Crystal 

Springs reservoirs is treated at the Harry W. Tracy Water Treatment Plant (Tracy WTP) before 

distributing to water users (San Francisco Planning Department, 2001). Figure 5-4 represents the water 

system in the Peninsula watershed.  

Stream flows of the Peninsula watershed divert to the oceans by two directions. First, from the upstream 

of San Andreas reservoir and the upstream of San Mateo Creek, streams flow to the South and direct into 

San Mateo Creek in the East towards San Francisco Bay. In addition, streams flow from the South of 

Crystal Springs reservoir towards the North of Crystal Springs reservoir and divert into San Mateo Creek 

at the same location as stream flows from the upstream of San Andreas reservoir and the upstream of San 

Mateo Creek. Second, stream flows from the upstream of Pilarcitos reservoir direct into Pilarcitos Creek 

towards Pacific Ocean (shown in Figure 5-6 and Figure 5-6).  

 

Figure 5-4 Flows in the Peninsula watershed (San Francisco Planning Department, 2001). 
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Figure 5-5 The scheme of main unregulated flows in the Peninsula watershed 
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Figure 5-6 Unregulated flows in the Peninsula watershed 
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Figure 5-7 Regulated and unregulated flows in the Peninsula watershed (San Francisco Planning Department, 2005) 

San Andreas and Crystal Springs reservoirs are final reservoirs in SFPUC water system so that they do 

not only store local runoff from the Peninsula watershed, but they also store water from the Tuolumne 

River, the Alameda creek watershed, and Pilarcitos creek. Thus, their storage capacity is bigger than the 

capacity relating to the water storage purpose for local runoff in the Peninsula watershed. San Andreas 

and Crystal Springs reservoir can reduce flows from San Andreas and San Mateo creeks immediately 

below the dams which can prevent flooding, except for occasional spills or releases. Despite flood control 

is not the original purpose for constructing Crystal Springs reservoir, it can diminish peak flows most of 

time. When flood storage capacity is filled, it can release uncontrolled flows over the spillway at Lower 
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Crystal Springs Dam or controlled releases at the outlets. Before releasing water from this reservoir, 

SFPUC always regards downstream effects. (San Francisco Planning Department, 2005) 

In term of drought control, there are no required releases from Crystal Springs, San Andreas, and 

Pilarcitos reservoirs to maintain minimum stream flows in San Mateo, San Andreas, and Pilarcitos 

Creeks. (San Francisco Planning Department, 2005)  

5.2. Methodology 
The reservoir design is based on the natural stream flows in the past 50 years. Any amount of future 

discharges outside of the stream flows variations in the past 50 years can cause adverse hydrologic effects 

on SFPUC's water system such as flooding, dewatering, erosion, or drainage alternation. (San Francisco 

Planning Department, 2005). Thus, this study aims to create a hydrologic model which can represent 

naturalized stream flows in the Peninsula watershed. Then, it will use different weather scenarios from the 

weather generators to create a range of future naturalized stream flows at the outlets of five sub-

watersheds. Likewise, a climate stress test will determine a range of stream flow alteration under 

precipitation and temperature changes. 

The Sacramento soil moisture accounting model (SAC-SMA) is used to build Peninsula hydrologic 

model. SAC-SMA is described in depth on section 4.2.  For Peninsula Hydrology, SAC-SMA was built 

with a lumped configuration, which removes the Lohmann routing module.  In addition, Genetic 

Algorithm (GA) is used to calibrate the hydrologic model, which is described in depth in Appendix E.   

5.3. Input data 

5.3.1. Digital elevation model (DEM) 

SRTM 90m digital elevation data produced by The National Aeronautics and Space Administration 

(NASA) are used in this project. SRTM is the short name of The Shuttle Radar Topography Mission, 

which was flown aboard the space shuttle Endeavour February 11-22, 2000. During Endeavour's 11-day 

mission, SRTM collected radar data over 80% of the Earth's land surface between 60° north and 56° south 

latitude. There are two spatial resolution: 1 arc-second for global coverage (~30 meters) and 3 arc-

seconds for global coverage (~90 meters). In this study, 90-meter resolution is used for delineating the 

watersheds and calculating average ground elevation to msl.   

5.3.2. Climate data 

Temperature and precipitation datasets are used as input climatology to the SAC-SMA hydrology models.  

As the SAC-SMA hydrology models for the Peninsula regions are lumped models, each watershed uses a 

single input time-series for each climate dataset.   

5.3.2.1. Temperature 

Temperature datasets are gathered from gridded dataset from (Livneh et al., 2015) over a period of 1950 

to 2011.  Figure 5-8 shows the Livneh temperature grid cells overlaid on top of the watersheds with 

various ground temperature stations used to validate the dataset.  A lapse rate is introduced to adjust the 

gridded dataset elevation temperature to ground elevation using the rate of 6.2℃ km⁄ .  Figure 5-9 shows 

the elevation-adjusted Livneh gridded data time-series with Spring Valley and Pulgas temperature 

stations.  
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Figure 5-8. Temperature ground station with Livneh, et. al 2015 grid cells with LOCA ID numbers overlaid on top 

of the Peninsula watersheds. 
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   (a)  

(b)  

Figure 5-9. Temperature data comparison of elevation adjusted Livneh, et. al. 2015 respective ground temperature 

stations (a) Spring Valley and (b) Pulgas. 
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5.3.2.2. Precipitation 

The precipitation dataset is gathered from three ground stations inside the study area.  A Thiessen 

polygon is generated for the watersheds to create an area-weighted average precipitation time-series to 

drive the hydrology models.  Table 5-2 outlines the duration and locations of the precipitation stations 

used with Figure 5-10 visually shows the coverage areas for each watershed.   

Table 5-2. Precipitation station latitude and longitude 

Station Name Latitude Longitude Start Date End Date 

Pilarcitos 37.55305556 -122.4286111 1956-10-01 2011-09-30 

San Andreas Reservoir 37.57916667 -122.4088889 1956-10-01 2011-09-30 

Upper Crystal Springs 37.51222222 -122.3541667 1956-10-01 2011-09-30 

 

 

Figure 5-10. Precipitation stations with Theissen polygon over Peninsula watersheds 
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5.3.3. Stream gauges 

Locations of stream gages are illustrated in Figure 5-3 and are from gauges or back-calculated naturalized 

flows. The streamflow datasets were received from SFPUC and the locations are listed in Table 5-3.  The 

watershed areas with streamflow data periods are listed in Table 5-4.   

Table 5-3. Stream gages 

Sub-watershed Stream gage Latitude Longtitude 

Pilarcitos Reservoir Pilarcitos Creek at Pilarcitos Dam 37.54805556 122.4286111 

Stone Dam Pilarcitos Creek above Stone Dam Accretion 37.527173 -122.398355 

San Andreas Reservoir San Andreas Reservoir Inflow by Mass 

Balance 

37.580239 -122.411845 

Crystal Springs 

Reservoir 

Crystal Springs Reservoir Inflow by Mass 

Balance 

37.528917 -122.362348 

San Mateo Creek San Mateo Creek at Mud Dam 1 37.55668778 -122.4180597 

 

Table 5-4. Watershed area and streamflow data range 

Watershed Start Date End Date Area (km2) 

Crystal Springs 2007-10-01 2017-09-22 62.119596 

Stone Dam 2011-11-22 2017-07-31 6.102815 

Pilarcitos 1999-10-01 2018-06-19 10.064031 

San Mateo 2011-02-28 2017-06-23 5.514076 

San Andreas 1979-01-22 2017-09-22 9.636758 

 

Limitations in gridded climate time-series limited the period of streamflow available for calibration.  

Specifically, these were concerns for San Mateo and Stone Dam watersheds, as the streamflow time-

series did not overlap enough for calibration purposes.  Therefore, the correlation was calculated for the 

San Mateo watershed streamflow over 2011-10-01 through 2016-09-30 and Stone Dam watershed over 

2012-10-01 through 2016-09-30.  Table 5-5 shows the calculated correlation of the various watersheds 

and shows the highest correlation streamflows were Pilarcitos.  Using the Pilarcitos streamflow, a basin-

area ratio calculation was applied generate streamflow from 1999-10-01 through 2011-09-30 for each 

respective region.   
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Table 5-5. Correlation calculated for (a)San Mateo watershed over 2011-10-01 to 2016-09-30 and (b)Stone Dam 

watershed over 2012-10-01 through 2016-09-30.   

(a) San Mateo Watershed San Mateo Pilarcitos San Andreas Crystal Springs 

San Mateo 1.000 0.927 0.698 0.757 

Pilarcitos 0.927 1.000 0.692 0.779 

San Andreas 0.698 0.692 1.000 0.665 

Crystal Springs 0.757 0.779 0.665 1.000 

(b) Stone Dam Watershed Stone Dam Pilarcitos San Andreas Crystal Springs 

Stone Dam 1.000 0.841 0.716 0.714 

Pilarcitos 0.841 1.000 0.783 0.785 

San Andreas 0.716 0.783 1.000 0.688 

Crystal Springs 0.714 0.785 0.688 1.000 

 

5.4. Model Calibration  
Figure 5-11 shows the process of hydrologic modelling. There are four stages. The first stage is the sub-

watershed delineation from DEM and locations of stream gauges. The second stage is the climate data 

preparation which combines gridded data and gauged data to create datasets of precipitation and 

temperature. These stages are conducted simultaneously. Then, precipitation and temperature are input 

data for hydrologic model in the simulation. Finally, the hydrologic model is calibrated for daily KGE 

using genetic algorithm.   
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Figure 5-11 Work flow of hydrologic modelling 

Each watershed is calibrated based on the configurations defined in Table 5-6 and validated over 2010-

10-01 through 2011-09-30.   

 

Table 5-6. Watershed calibration and validation periods with additional comments 

Watershed Start Date End Date Validation 

Period 

Note 

San Mateo 1999-10-01 2010-09-30 

2010-10-01 –  

2011-09-30 

Basin-area ratio adjusted Pilarcitos streamflow as 

calibration target 

San Andreas 1999-10-01 2010-09-30 
 

Crystal Spring 2007-10-01 2010-09-30 2006-10-01 to 2007-09-30 used as warmup period 

Stone Dam 1999-10-01 2010-09-30 Basin-area ratio adjusted Pilarcitos streamflow as 

calibration target 

Pilarcitos 1999-10-01 2010-09-30 
 

 

 

DEM Locations of flow data 

Sub-watersheds 

Gauged P Gridded T 

Precipitation (P), temperature (T) 

 

Simulated stream flows 

Calibrated stream flows 

CALIBRATION 

SIMULATION 

SUB-WATERSHED DELINEATION CLIMATE DATA PREPARATION 

Delineate 

Genetic algorithm 

Hydrologic model SAC-SMA 
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5.5. Calibration Results  
 

Table 5-7 shows performance metrics for calibration and validation of all five sub-watersheds in 

Peninsula watershed. All but San Andreas sub-watersheds have good daily KGE calibration values (above 

0.8), but San Andreas KGE is very close to 0.8.  While maximizing daily KGE is the target for 

calibration, other performance metrics were also compared.  Daily NSE is seen to be within acceptable 

levels (above 0.7) for all sub-watersheds except for San Andreas, but with significantly higher monthly 

KGE and monthly NSE scores and fairly small percent bias values during the calibration period.  

Validation metrics shows similar results to calibration metrics, except for the increase in percent bias for 

Crystal Spring and decrease for San Mateo.  These will be discussed further below.   

 

Table 5-7.  Calibration and validation metrics for Peninsula watersheds 

Calibration 

Watershed Daily KGE Daily NSE PBias (%) Monthly KGE Monthly NSE 

San Mateo 0.873 0.775 -3.0 0.912 0.870 

San Andreas 0.794 0.594 1.0 0.630 0.760 

Crystal Spring 0.872 0.743 0.4 0.906 0.912 

Stone Dam 0.860 0.722 0.1 0.895 0.832 

Pilarcitos 0.871 0.770 -2.9 0.925 0.877 

Validation 

Watershed Daily KGE Daily NSE PBias (%) Monthly KGE Monthly NSE 

San Mateo 0.810 0.750 -14.7 0.808 0.871 

San Andreas 0.675 0.328 -4.9 0.565 0.665 

Crystal Spring 0.740 0.737 22.5 0.774 0.937 

Stone Dam 0.873 0.766 0.2 0.798 0.864 

Pilarcitos 0.838 0.766 1.1 0.748 0.825 
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Figure 5-12. San Mateo sub-watershed daily and monthly streamflow hydrographs, monthly scatterplot, and 

monthly flow duration curve.   

San Mateo calibration results are shown in Figure 5-12 with daily and monthly streamflow hydrographs, 

monthly scatterplot, and monthly flow duration curves.  The streamflow is measured in the plot as depth 

in millimeters.  A conversion can be made from millimeters to cubic feet per second by multiplying the 

watershed area.  The plots all show a good model fit with the flow duration curve showing an 

underestimation of low flows compared to historic observed values.  However, this estimate is assumed to 

be acceptable as the historic observed value is the basin-area ratio of Pilarcitos streamflow.  The 

validation period from 2010-10-01 through 2011-09-30 shows a percent bias of -14.7%, which is due to 

the underestimation of the flows over those periods, however the monthly hydrograph and scatterplot 

shows minimal issues during the validation periods.   
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Figure 5-13. San Andreas sub-watershed daily and monthly streamflow hydrographs, monthly streamflow 

scatterplot, and flow duration curve.   

San Andreas calibrations, and all the other hydrologic model calibrations, were performed similarly to 

San Mateo model calibrations.  San Andreas is shown to have a more difficult model fit due to observed 

zero flow events.  This is shown in Figure 5-13 where the monthly streamflow scatterplot shows an 

underestimation of flows.  In addition, the monthly flow duration curve shows the creek as dry for a few 

months while the hydrology model has no dry flow months.   
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Figure 5-14. Crystal Springs sub-watershed daily and monthly streamflow hydrographs, monthly streamflow 

scatterplot, and flow duration curve.   

Crystal Springs calibration was severely limited due to the limited streamflow dataset available.  To work 

with the limited data available, the hydrology model warmup was performed repeating the first year’s 

worth of data.  However, even with limited data availability, the hydrology model is shown to have a 

great model fit based on Figure 5-14.  The daily and monthly streamflow hydrographs are shown to have 

a good model fit as well as the monthly streamflow hydrograph.  The monthly flow duration curve plot 

shows a good fit for high to low flows but continues to have minimal flow during no-flow periods.  

Another point to address is the 22.5% bias increase during the validation period of 2010-10-01 through 

2011-09-30.  Figure 5-15 shows a daily hydrograph over the validation period, so the increase in percent 

bias can be explained in the large amount of overestimation during low flow event.   
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Figure 5-15. Daily streamflow hydrograph over a period of 2010-10-01 through 2011-09-30 for Crystal Springs 
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Figure 5-16. Stone Dam sub-watershed daily and monthly streamflow hydrographs, monthly streamflow scatterplot, 

and flow duration curve.    

Stone Dam sub-watershed calibration is observed to be a good fit for the hydrology data.  Figure 5-16 

shows acceptable daily and monthly streamflow hydrographs, monthly scatterplot, and flow duration 

curve.  The Stone Dam model has high daily and monthly KGE values with 0.860 and 0.895 respectively.  

The 2007 streamflow period is from the basin area-ratio streamflow from Pilarcitos watershed where the 

Pilarcitos streamflow shows flow during 2007 but there is little precipitation as input to the hydrology 

model as shown in Figure 5-17.    
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Figure 5-17. Observed and simulated streamflow (black and red respectively) with precipitation (blue) from 2005-

10-01 through 2008-09-30.  
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Figure 5-18. Pilarcitos sub-watershed daily and monthly streamflow hydrographs, monthly streamflow scatterplot, 

and flow duration curve.   

Pilarcitos calibrations were performed with daily observed streamflow and precipitation driven from the 

Pilarcitos climate station.  The calibration resulted in a daily KGE and NSE values of 0.871 and 0.770 

respectively, with monthly KGE and NSE values of 0.925 and 0.877 respectively.  Calibration of 

Pilarcitos is shown to have an underestimation of 2.9% as also shown by the fitted line in the monthly 

scatter plot.  The flow duration curve also shows an underestimation of streamflow.  The 2007 year event 

is not captured by the hydrology model due to limited precipitation data during that period, similar to 

Figure 5-17.  However, the model still performed well during the validation period with daily KGE and 

NSE of 0.838 and 0.766 respectively and monthly KGE and NSE of 0.748 and 0.825.   
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5.6. SAC-SMA-L simulations forced by the stochastic weather generator climate 

stress test 

 

Figure 5-19 Total annual stream flow (acre-feet) under temperature and precipitation changes respectively for 

Crystal Springs Reservoir, San Andreas Reservoir, San Mateo Creek, Pilarcitos Reservoir, and Stone Dam sub-

watersheds. The yellow and green dots over the response surface shows CMIP5 projections under RCP 8.5 for two 

30-year long periods: 2040 (2026-2055) and 2070 (2056-2095).  Baseline is 1986-2005.  Historic mean observed is 

shown in white and follows the dashed line. 

Figure 5-19 shows the total annual stream flow under temperature and precipitation changes.  The pattern 

of total stream flow is similar to the East Bay climate stress test. The higher precipitation generates more 

flows while higher temperature produces less flows. This change is due to additional water collected in 

the watershed from precipitation events and more evapotranspiration due to increase in temperature.   

Results below are presented for inflow at Crystal Springs reservoir the largest watershed in the Peninsula. 

• By 2040, the median projections of +2°C warming combined with 0% change in mean 

annual precipitation results in 7% reduction in mean annual inflow.  

• By 2040, most projections and elicitations of warming are between +1°C and +4°C and 

for precipitation change between -5% and +5% which would correspond to a maximum 

change in mean annual inflow between a decrease of 23% and an increase of 10%.  

• By 2070 RCP8.5, the median projections of about +4°C combined with 0% change in 

mean annual precipitation results 14% decrease in mean annual inflow. Most projections 
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and elicitations of warming range between +3°C and +6°C and of precipitation change 

between -15% and +15% resulting in change in mean annual inflow between a decrease 

of 46% and an increase of 29%.  
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6. Upcountry Hydrologic Drought Analysis 
 

The aim of this drought analysis is to estimate how sensitive the frequency of droughts in the Tuolumne 

River is to changes in climate, and so it will focus on hydrologic drought which is the deficit in 

streamflow below a specified threshold. The analysis is limited in scope to the Upcountry region as it 

represents roughly 85% of yield from the RWS. This analysis is strictly looking at the availability of 

water for SFPUC on the Tuolumne River in sequences of dry years using multiple datasets of streamflow: 

historical, paleo-reconstruction and simulated with PRMS hydrologic model using stochastic weather 

generated inputs. Figure 6-1 presents historical deviations of annual flow from the mean on the Tuolumne 

River at La Grange. Consecutive years with negative deviation can be considered droughts. In recent 

history, three droughts are especially remarkable for SFPUC: 1976-1977, 1987-1992 and the most recent 

2012-2016.  

This analysis focuses on the frequency of two characteristics of droughts: the severity – cumulative flow 

deficit – and the duration. The frequency of occurrence of events such droughts or floods is often 

expressed as a return period, which gives the estimated time interval between events of similar 

characteristics (same severity, same duration or same severity and duration). The return period between 

occurrences is the inverse of the average frequency of occurrence. For example, a 100-year flood has a 

1/100 = 0.01 or 1% chance of being exceeded in any one year. This does not mean that if a 100-year flood 

occurs, then the next will occur in about one hundred years' time - instead, it means that, in any given 

year, there is a 1% chance that it will happen, regardless of when the last similar event was. The same 

reasoning is applicable to drought severity and duration.  

 

 

Figure 6-1. Unimpaired annual flow of the Tuolumne River at La Grange. Deviations from historical mean (1924-

2017).  

First, the analysis estimates the distribution of severity and duration, separately. However, there is a 

strong dependence between severity and duration (really severe droughts tend to be longer). The separate 

analysis of severity and duration does not reveal the significant correlation relationship between them. 

Therefore, a better approach for describing drought characteristics of severity and duration is to derive the 
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joint distribution of severity and duration. This analysis will allow to evaluate a change in frequency of 

drought severity and duration with changes in mean annual temperature and precipitation.  

6.1. Definition of hydrologic drought 
The scientific literature has proposed several indices to characterize drought episodes (Stahl et al. 2020). 

In this study, drought characteristics are derived using the theory of run (Yevjevich, 1967) by calculating 

the cumulative deficit and duration of shortfall of flow below a certain threshold. The considered ‘flow’ 

variable to be compared with the drought threshold is the Water Available to the City, or WAC. WAC is 

defined as the difference between the unimpaired Tuolumne River flow at La Grange QLG, and the actual 

irrigation district entitlement QDE: 

 

 
𝑊𝐴𝐶(𝑡) = QLG(𝑡) − QDE(𝑡). (6-1) 

QDE is the minimum between QLG and the maximum irrigation district entitlements 𝑄𝐷𝐸
𝑚𝑎𝑥: 

 𝑄𝐷𝐸(𝑡) = min(𝑄𝐿𝐺(𝑡), 𝑄𝐷𝐸
𝑚𝑎𝑥(𝑡)), (6-2) 

where the maximum district entitlement is 4,800 AF/day (2,416 cfs) from June 13th to April 15th and 

8,065 AF/day (4,066 cfs) from April 15th through June 13th. The cumulative deficit 𝐷 during the water 

year 𝑌 is defined as: 

 

 
𝐷(𝑌) = min(𝐷(𝑌 − 1) + 𝐓𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 −  WAC(𝑌), 0) , where 𝐷(𝑌 = 𝑌𝑖) = 0, (6-3) 

where 𝑌𝑖 is the first year of the time series. It is noted that equations (6-1) and (6-2) are solved at daily 

time step so that the calculation of WAC can account for the variations in the maximum district 

entitlement 𝑄𝐷𝐸
𝑚𝑎𝑥. An illustration of the calculation of WAC is given in Figure 3-18 for the water year 

1983 (wet) and 1987 (dry). When streamflow data are not available at daily resolution, a regression is 

used to estimate the annual actual district entitlement QDE (Section 6.2) and Equation (6-3) is solved at 

annual time scale. Two drought thresholds are considered below. The first threshold is 269 TAF, which is 

the largest annual transfer in the past decade from the Upcountry region to the East Bay and Peninsula 

regions. It occurred during the fiscal year 2012-2013. The second threshold is 365 TAF, which is the 

maximum annual transfer capacity from the Upcountry region based on the capacity of the San Joaquin 

Pipelines. This second threshold is used to assess the upper bound, given the current transfer capacity 

from the Upcountry region, of what the drought distribution may look like in a hypothetical reality in 

where the San Joaquin Pipelines were used at full capacity. 

Figure 6-2 illustrates the simulated cumulative deficit for the two considered thresholds (middle and 

bottom panels). The unimpaired annual streamflow time series at La Grange used in Figure 6-2 (top 

panel) is a reconstructed time series that was provided by SFPUC. Drought events start when the 

cumulative deficit value gets negative and end when they reach their local maximum (hereafter denoted 

as severity). The effect of setting a larger threshold is clear on this figure: larger drought threshold leads 

to more frequent, longer and more severe droughts, despite some nonlinearities (cf. the one year long 

drought the happens right after the 1987-92 drought for 269 TAF threshold but does not exist with 365 

TAF threshold). Table 6-1 lists the drought events recorded using both thresholds together with their 
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severity and duration. Note that all historical droughts highlighted in Figure 6-2 are correctly identified; 

and their duration and severity depend on the considered threshold. 

 

 

Figure 6-2. Historical Tuolumne Flow at La Grange with District Entitlement and threshold at 269 TAF (top) with 

the corresponding cumulative deficit plot (middle) and cumulative deficit plot for threshold at 365 TAF (bottom). 

The grey shaded areas show the identified droughts and the numbers tell their duration in years. The red dots show 

the associated severity to each drought event. 

Table 6-1. Extracted drought events from historical Tuolumne flow at La Grange for two different thresholds. For 

each threshold, the drought events are sorted by decreasing severity.  

Threshold: 269 TAF Threshold: 365 TAF 

Year Drought ends 
Severity 

[TAF] 
Duration of Deficit [Years] 

Year Drought 

Ends 

Severity 

[TAF] 
Duration of Deficit [Years] 

1992 707.39 6 1992 1283.39 6 

2015 594.35 4 2015 978.35 4 

1977 510.18 2 1977 702.18 2 

1961 389.44 3 1961 677.44 3 

1931 312.14 3 1931 600.14 3 

1924 233.66 1 2008 418.98 2 

2008 226.98 2 1934 357.10 2 

1934 218.34 1 1924 329.66 1 

1994 204.77 1 1968 229.06 1 

1968 133.06 1 1939 223.20 1 

1939 127.20 1 1947 190.42 1 
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1947 94.42 1 1964 189.19 1 

1964 93.19 1 1981 165.90 1 

1981 69.90 1 1972 154.99 1 

1972 58.99 1 1985 118.42 1 

1985 22.42 1 1955 104.96 1 

1955 8.96 1 2001 75.15 1 

   1926 72.70 1 

   1966 45.69 1 

   1944 37.45 1 

   2004 37.09 1 

 

6.2. Streamflow Datasets 
Following the methodology described in the previous section, the detection of drought events and 

estimation of their severity and duration only requires a time series of unimpaired flow at La Grange. 

Three different data sources are used to provide such time series.  

The first dataset is an annual time series of reconstructed unimpaired streamflow at La Grange from 1921 

to 2011. This time series was provided by SFPUC and illustrated in Figure 6-3. The temporal resolution 

of this time series is annual, which prevents from calculating the actual district entitlements using the 

above equations. However, an annual time series of actual district entitlements was provided by SFPUC. 

This dataset will be used as reference for the severity and duration of the historical droughts. 

The second dataset considered for the drought analysis is a collection of simulated streamflow time series 

at La Grange obtained from PRMS model when forced by climate realizations generated with CliWxGen. 

In addition to the 10 realizations, 500 other realizations are considered.  More details about the input 

climatology is available in the Technical Report 1 (HRG TR1, 2021). The objective of using such a large 

number of stochastic realizations is to create a large collection of droughts to increase the robustness of 

the statistical inference of the distribution parameters for the severity and duration models. 

The third dataset used for the drought analysis is a paleo record for the Tuolumne River at La Grange. 

This record is from the Northern California Tree Ring Study by California Department of Water 

Resources.  This record spans from the year 900 to 2012 by creating a correlation based on tree-ring 

width to annual observed streamflow or precipitation data.  The drought events extracted from the paleo 

dataset is of interest because it provides insights on the effect of the natural climate variability on the 

frequency, severity, and duration of droughts. Both paleo and reconstructed records are compared over 

the period 1921-2012 in Figure 6-3, allowing for an evaluation of the paleo streamflow. Over the period 

1921-2012, the annual average of the paleo streamflow is 1,918.5 TAF, while the observed is 1,858.5 

TAF. The result suggests a slight overestimation of paleo streamflow (+3.3%) with lower variability as 

outlined in Table 6-2. Therefore, quantile mapping bias correction was applied to the full paleo dataset 

using two fitted gamma distributions, which significantly reduced the bias in average and variability over 

the period 1921-2012 as indicated in Table 6-2.  
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Figure 6-3. Comparison of available Paleo record data with observed historical full-naturalized flow of Tuolumne 

River at La Grange. These annual water-year time-series are shown from 1921 through 2012. The grey shaded 

region is the 50% confidence interval for the Paleo record. The dashed lines represent the long-term average for full 

naturalized flow at La Grange (black), Paleo dataset (blue) and bias-corrected Paleo (red).  

Table 6-2. Summary statistics for Historic, Paleo, and Bias-corrected Paleo time-series 

Dataset (1921-2012) Mean (TAF) Standard Deviation (TAF) 

Historic 1858.5 907.9 

Paleo 1918.5 810.8 

Bias Corrected Paleo 1859.4 901.9 

The paleo record at La Grange is available at annual temporal scale and, contrary to the historical record 

reconstructed by SFPUC, it does not come with a reconstruction of the actual district entitlements. As 

such, the actual district entitlements for the paleo records were estimated using the regression presented in 

Figure 6-4. This regression has been estimated using the historical reconstruction of the flow at La 

Grange and actual district entitlements provided by SFPUC. It uses annual unimpaired flow at La Grange 

as predictor to predict the annual actual district entitlement. The fit of the regression model was deemed 

satisfying for the drought analysis.  
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Figure 6-4. Regression between actual district entitlements and unimpaired flow at La Grange. 

 

6.3. Fitting of distributions for severity and duration 
This section presents first the identified drought events using the methodology described in Section 6.16.2 

and the datasets presented in Section 6.2. Then, statistical distributions are selected, and their parameters 

calibrated for modeling the frequency of drought severity and duration. Return periods for historical 

droughts are provided for both severity and duration. Last, copula functions are investigated to model the 

relationship between severity and duration and provide return periods accounting for the joint distribution 

of severity and duration of droughts.  

Drought events were extracted from 1,113 years of paleo streamflow records (900 – 2012), 100 years of 

historic Tuolumne Flow at La Grange (1921 – 2020), 49 years from each of the 10 climate realizations 

from the CliWxGen-WG, and 49 years from the 500 drought realizations selected from the remaining 

realizations in CliWxGen-WG (only 49 years from the 50-year long simulations were used because the 

first year serves as warm-up period for PRMS). When put together, the different datasets accumulate to a 

total of 26,110 years. This latter dataset is further denoted as ‘combined’ dataset. Note that when 

combined, the years in the paleo records after 1920 were disregarded because this period is available from 

the reconstructed historical streamflow provided by SFPUC.  

Figure 6-5 shows the distribution of drought severity and duration across the identified events using the 

combined dataset (numbers of identified events for each dataset are given in Table 6-3). Using the 

combined dataset and a drought threshold set to 269 TAF, a total 4,318 drought events have been 

extracted (average duration is 1.61 years and average severity is 217 TAF). When using a threshold equal 

to 365 TAF, this number grows to 4,351 (average duration is 2.04 years and average severity is 346 

TAF). It is interesting to note that the number of events does not increase significantly with a larger 

threshold (i.e., +33 events). However, the average severity increases significantly by +129 TAF, which 

corresponds to an increase by almost 60%. The severity of the identified drought events ranges from 

roughly 0 to 1,218 TAF or 1,985 TAF, whether the 269 or 365 TAF is used. Similar to severity, the 

duration of the simulated drought events is significantly influenced by the chosen thresholds. Using a 269 

TAF threshold, the duration ranges from 1 to 9 years. Only 4 droughts have a duration of 8 years or more 

(difficult to see on the figure due to scale and resolution). Using the 365 TAF threshold, the duration 

ranges from 1 to 14 years.  
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Figure 6-5. Distribution of the severity (left) and duration (right) of the identified drought events using the 269 TAF 

(top) and 365 TAF (right) thresholds with the combined dataset. 

Table 6-3. Number of identified drought events using theory of run for each dataset. The combined dataset is a 

combined dataset with drought events from historical (1921-2020), Paleo (900-1920), and 510 stochastic 

realizations. 

Dataset 
Number of 

years 

Average Severity (TAF) Number of Drought Events 

Threshold: 269 

TAF 

Threshold: 365 

TAF 

Threshold: 269 

TAF 

Threshold: 365 

TAF 

Historical (1921 – 

2020) 
100 236 333 17 21 

Paleo (900 – 2012) 1,113 147 222 135 173 

Bias Corrected Paleo  

(900 – 2012) 
1,113 188 294 171 190 

Stochastic Realizations 24,990 220 351 3,902 4,172 

Combined 26,110 217 346 4,318 4,351 

 

Several statistical distributions have been investigated to model the frequency of the severity and duration 

of the identified droughts. The considered distributions to model severity and duration are given in Table 

6-4 and Table 6-5, respectively. Continuous distributions were tried for severity and both continuous and 

discrete distributions were used for duration. The method to calibrate the model parameters is the 

Maximum Likelihood Estimation (MLE).  The fitted models were evaluated based on their visual fit to 
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density plots, quantile (Q-Q) plots, cumulative distribution function (CDF) plots, and probability (P-P) 

plots.  Figure 6-6 shows these plots for the Weibull distribution fit, the selected distribution, to cumulative 

drought deficit for a threshold of 269 TAF with the data fitting the empirical fitted distribution as closely 

as possible.   

 

Figure 6-6. Weibull distribution fit on cumulative deficit for a threshold of 269 TAF.  The figures are distribution fit 

to the density plot (top-left), Q-Q plot (top-right), cumulative distribution function plot compared to the fitted 

distribution (bottom left), and the P-P plot (bottom-right).   
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Figure 6-7. Generalized Pareto distribution (GPD) fit on duration for a threshold of 269 TAF.  The figures are 

distribution fit to the density plot (top-left), Q-Q plot (top-right), cumulative distribution function plot compared to 

the fitted distribution (bottom left), and the P-P plot (bottom-right).   

 

The fitted distributions were evaluated considering both the Akaike and Bayesian information criteria 

(AIC and BIC, respectively), in addition to the visual inspection of the goodness of fit of the empiric and 

simulated cumulative distributions for severity and duration. AIC and BIC criteria are commonly used to 

compare the goodness-of-fit across multiple distributions. They are both negatively oriented (low values 

are better than high values). For the combined dataset, Table 6-4 shows that a Weibull distribution 

provides the best fit to model the frequency of the severity of the identified drought events. Still for the 

combined dataset, Table 6-5 shows that the Log-Pearson Type-III distribution provides the minimum AIC 

score, although the visual fit for the drought duration cumulative distribution is bad (Figure 6-8). For this 

reason, the selection of the distribution to model the frequency of the drought duration was based on the 

visual fit of the data. As such, the Generalized Pareto Distribution (GPD) was selected to model the 

frequency of the drought duration (Figure 6-8). Weibull (severity) and GPD (duration) were also found to 

be suitable distributions for the other datasets. Note that the choice of either 269 or 365 TAF for threshold 

does not influence the model selection. The calibrated parameters of the fitted distribution are given in 

Table 6-6.   
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Table 6-4. Cumulative drought deficit distribution fit criterions for thresholds 259 TAF and 365 TAF. AIC and BIC 

are obtained for the combined dataset. Distributions are sorted by increasing AIC. The * symbol indicates the 

selected model for the drought severity. 

 Threshold: 269 TAF Threshold: 365 TAF 

Distribution AIC BIC AIC BIC 

Weibull* 49689 49702 59611 59624 

Gamma 49792 49804 59665 59662 

Log-Pearson Type III 49868 49887 59759 59778 

Generalized Pareto (GPD) 49872 49884 59650 59662 

Generalized Extreme Value (GEV) 49898 49917 60061 60080 

Exponential 50147 50153 59789 59795 

 

Table 6-5. Drought duration distribution fit criterions for thresholds 259 TAF and 365 TAF.  AIC and BIC are 

obtained for the combined dataset. Distribution are sorted by increasing AIC. The * symbol indicates the selected 

model for the drought duration. As indicted in the text, the selection of the model for drought duration was based on 

the visual fit of the empirical distribution rather than the AIC score. ‘Inf’ stands for Infinity. 

 Threshold: 269 TAF Threshold: 365 TAF 

Distribution AIC BIC AIC BIC 

Log-Pearson Type III 5959 5978 10139 10158 

Gamma 9320 9333 13521 13534 

Weibull 10099 10112 14044 14057 

Poisson 11290 11297 15103 15109 

Negative Binomial 11292 11305 15102 15109 

Exponential 11635 11641 14964 14970 

Generalized Pareto (GPD)* 12618 12624 16716 16722 

Geometric 13666 13673 16820 16826 

Generalized Extreme Value (GEV) Inf Inf 12463 12482 

Binomial Inf Inf Inf Inf 

Hypergeometric Inf Inf Inf Inf 
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Figure 6-8. Empirical (black dots) and theoretical (color lines) cumulative distribution functions for drought 

duration. 

Table 6-6. Distribution parameters for fitted baseline scenario distributions for severity and duration. 

Variable Distribution Dataset 

Threshold: 269 TAF Threshold: 365 TAF 

Shape Scale Shape Scale 

Severity Weibull 

Historical 1.14 246.94 1.06 341.59 

Paleo 1.23 156.90 1.31 240.39 

Bias Corrected Paleo 1.39 205.59 1.29 316.43 

Stochastic Realizations 1.31 237.76 1.18 370.83 

Combined 1.30 234.85 1.18 365.58 

Duration GPD 

Historical 0.22 0 0.17 0 

Paleo -0.14 0 0.023 0 

Bias Corrected Paleo -0.07 0 0.17 0 

Stochastic Realizations 0.10 0 0.33 0 

Combined 0.063 0 0.32 0 
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The return period 𝑇 for a specific severity or duration value 𝑥 is calculated based on:  

 𝑇 =
𝜇

1 − 𝐹𝑥(𝑥)
, (6-4) 

where 𝐹𝑥(𝑥) is the cumulative distribution function value for the variable 𝑥, and 𝜇 is the mean inter-

arrival time (Gräler, 2013). The mean inter-arrival time is estimated as the ratio between the total numbers 

of years and the number of drought events. As such, it varies depending on the considered threshold and 

the considered dataset. The mean inter-arrival time values for each dataset are given for each dataset and 

threshold in Table 6-7.  

Table 6-7. Mean inter-arrival time obtained for the considered datasets and the two drought thresholds 

Dataset 
Mean inter-arrival time 𝜇 (years) 

Threshold: 269 TAF Threshold: 365 TAF 

Historic 4.76 5.88 

Paleo 8.24 6.43 

Bias Corrected Paleo 6.51 5.86 

Stochastic 

Realizations 
6.40 5.99 

Combined 6.05 6.00 

Figure 6-9 illustrates the drought severity and duration frequency curves obtained with the considered 

datasets and the 269 TAF threshold. Figure 6-10 shows similar frequency curves but obtained using 365 

TAF threshold. The sampling uncertainty is shown using 95% confidence intervals obtained with 

bootstrap method (5,000 random samples were used). The three most recent major historical droughts are 

indicated on these figures. The estimated return periods for the historical droughts estimated from each 

dataset and using the two considered thresholds are given in Table 6-8. 

 

 

Figure 6-9. Drought frequency curves for severity (left) and duration (right). Results are obtained for the 269 TAF 

threshold. The color lines show the frequency curves obtained for the considered datasets: bias corrected paleo 
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(blue), paleo (green), historic (red), 510 stochastic realizations (purple) and the combined dataset (black). The 

shaded areas show the 95% confidence intervals obtained using the bootstrap method for each model. Severity and 

duration for the historic drought events are shown and labeled as vertical lines. 

 

  

Figure 6-10. Drought frequency curves for severity (left) and duration (right). Results are obtained for the 269 TAF 

threshold. Caption details are similar than Error! Reference source not found.. 

Table 6-8. Estimated return periods of drought severity and duration for the historic drought events.  

Drought 

Event 
Dataset 

Threshold: 269 TAF Threshold: 365 TAF 

Return Period [Years] Return Period [Years] 

Severity Duration Severity Duration 

1976-1977 

Historic 58 31 41 27 

Paleo 599 85 370 45 

Bias Corrected Paleo 221 56 97 33 

Stochastic Realizations 98 40 50 28 

Combined 95 38 52 28 

1987-1992 

Historic 163 267 280 305 

Paleo 5,033 Inf 47,385 1,769 

Bias Corrected Paleo 1,673 15,838 2,672 364 
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Stochastic Realizations 420 698 447 165 

Combined 407 694 475 172 

2012-2015 

Historic 89 103 101 102 

Paleo 1,455 2,644 3,324 295 

Bias Corrected Paleo 508 714 436 124 

Stochastic Realizations 178 184 137 77 

Combined 173 179 144 79 

 

Estimated return periods for drought severity and duration for historic droughts are shown to be highly 

dependent on the underlying datasets used to fit the statistical models. For instance, the return period 

estimates for the severity of the 1976-77 and 1987-92 droughts range from 58 to 599 years, and from 163 

to 5,033 years, respectively (Table 6-8). Similar comments can be made for the drought duration (Table 

6-8). One important explanation for the large estimate range across datasets is the difference in number of 

years and identified drought events within each datasets (Table 6-3). Return periods calculated with a 

limited number of identified drought events corresponding are expected to be unreliable, especially for 

severity or duration significantly beyond the range observed in the dataset (Bonaccorso, et. al. 2003). The 

sampling uncertainty can be visualized in Figure 6-10 with the 95% confidence intervals surrounding the 

frequency curve obtained from each dataset (i.e., shaded areas in color). Confidence intervals were 

obtained via the bootstrap method using 5,000 random samplings. Confidence intervals are large for 

datasets with a limited number of events available to fit the distribution (e.g., historic and paleo), while 

they are small for datasets with a large number of droughts.  

6.4. Joint distribution of severity and duration 
As aforementioned, the separate analysis of severity and duration does not reveal the significant 

correlation relationship between them. Therefore, a better approach for describing drought characteristics 

of severity and duration is to derive the joint distribution of severity and duration. This analysis will allow 

to evaluate a change in frequency of drought severity and duration with changes in mean annual 

temperature and precipitation. 

Figure 6-11 illustrates the relationship between drought severity and duration as seen across the identified 

events and for the two considered thresholds. The 1976-77 and 1987-92 droughts are labeled on the plot. 

Several observations can be made from this figure.  

First, it is noted that the severity tends to increase with the duration of the events, although the severity 

varies significantly for each duration. For example, the severity of 2-year long drought events ranges from 

about 0 to about 550 TAF or 750 TAF for drought thresholds set to 269 or 365 TAF, respectively. Note 

that the historical 1976-77 drought is on the very high-end of this range.  

Another highlight shown in Figure 6-11 is that droughts with rather short duration (e.g., less than 3 years) 

can be as severe, if not more severe, than droughts with significantly longer duration. For example, 
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considering a 269 TAF threshold, the severity of the most severe 2-year long droughts is similar to the 

median severity of the 4-year long droughts, which is also twice as much as the severity of the less severe 

6-year long drought. 

 

  

Figure 6-11. Extracted drought events across all 10 climate realizations (red circle), 500 drought realizations (grey 

circle), historic data (black square), and paleo (blue diamond) records for the two thresholds; 269 TAF (top) and 

365 TAF (bottom). 

The complex relationship between drought duration and severity illustrated above highlights the 

importance of accounting for the joint probability of the severity and duration for assessing drought risk. 

To provide insight into the relationship between drought severity and duration, Kendall’s rank correlation 

coefficient, Spearman’s rank correlation coefficient, and Pearson’s linear correlation coefficient are 

shown in Table 6-9. All correlation coefficients are positive implying that longer droughts tend to be 

more severe. Pearson’s correlation indicates an explained variance slightly above either 61% or 66% 

when using either 269 TAF or 365 TAF threshold, indicating a significant relationship between severity 

1976-1977 

1976-1977 

1987-1992 

1987-1992 
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and duration (i.e., the explained variance is obtained by taking the squared value of the Pearson’ 

correlation coefficient).  

 

 

Table 6-9. Correlation coefficients between droughts severity and duration 

Correlation 
Threshold: 

269 TAF 

Threshold: 

365 TAF 

Kendall’s Rank Correlation Coefficient 0.564 0.628 

Spearman’s Rank Correlation Coefficient 0.694 0.773 

Pearson’s Linear Correlation Coefficient 0.782 0.817 

In statistics, the dependence between two random variables, say 𝒀 and 𝒁, can be modeled via their joint 

distribution using multivariate distributions, such as the bivariate normal distribution for instance. 

However, one major limitation of the multivariate distributions is that the marginal distributions must 

follow the same theoretical distribution. For instance, in the case of the bivariate normal distribution, the 

two marginal distributions are normal. This is a significant limitation for the drought analysis conducted 

for the LTVA because the drought severity and duration of the identified drought events are distributed 

following two different distributions; a Weibull distribution for the severity and the GPD for the duration 

(Section 6.3). 

Following Sklar’s theorem (Sklar, 1959), however, any multivariate joint distribution 𝐹(𝑦, 𝑧) can be 

specified from the univariate marginal distributions for 𝒀 and 𝒁 and a copula function 𝐶 that describes the 

dependence structure between the random variables 𝒀 and 𝒁 (e.g., Genest and Favre, 2007): 

 𝐹(𝑦, 𝑧) = Pr(𝑌 < 𝑦, 𝑍 < 𝑧) = 𝐶(𝐹𝑌(𝑦), 𝐹𝑍(𝑧), 𝜗) (6-5) 

where 𝜗 is a parameter that controls the degree of dependence between 𝒀 and 𝒁. In the case developed 

here, 𝒀 and 𝒁 are the duration and severity of the identified drought events. Various copula functions 

were fit using maximum likelihood estimation, and the selection was made based on the Akaike 

Information Criteria (AIC). The survival Clayton (Clayton, 1978) and Gumbel (Gumbel, 1960) copula 

functions were found to fit best the severity and duration joint distribution, respectively when using 269 

TAF or 365 TAF thresholds (Table 6-10).  

The structure of the Clayton copula is defined as: 

 

𝐶𝜗
𝐶𝑙(𝑢1, … , 𝑢𝑛) = (∑(𝑢𝑖

−𝜗 − 1)

𝑖

+ 1)

1 𝜗⁄

, where 𝜗 ≥ 0 and 0 ≤ 𝑢𝑖 ≤ 1, 𝑖 = 1, … , 𝑛 (6-6) 

The survival Copula is a 180° rotation of the input pseudo-observation of the covariate 𝑢𝑛, which is 

shown in equation (6-7 with survival copula �̌� and the copula 𝐶̅.   
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 �̌�(𝑢1, … , 𝑢𝑛, … , 𝑢𝑁) = 𝐶̅(1 − 𝑢1, … ,1 − 𝑢𝑛, … ,1 − 𝑢𝑁) (6-7) 

 

The structure of the Gumbel copula is defined as: 

 

𝐶𝜗
𝐺𝑢(𝑢1, … , 𝑢𝑛) = exp ((∑(− log 𝑢𝑖)𝜗

𝑖

)

1 𝜗⁄

) , where 𝜗 ≥ 1 and 0 ≤ 𝑢𝑖 ≤ 1, 𝑖

= 1, … , 𝑛 

(6-8) 

For the application of the above copula functions, 𝑛=2 as only 2 co-variates are considered (i.e., severity 

and duration). 

Table 6-10. Copula model fit performance for various copula families. Lower the value, the better the fit. Bold 

values show the minimum AIC values that indicate the copula function to use for each threshold. 

 Threshold: 269 TAF Threshold: 365 TAF 

Copula AIC BIC AIC BIC 

Survival Clayton -2909.63 -2903.33 -3622.42 -3616.04 

Clayton -2888.01 -2881.70 -3668.83 -3662.46 

Joe -2852.59 -2846.28 -3622.42 -3616.04 

Gumbel -2828.46 -2822.15 -3746.15 -3739.77 

Gaussian -2541.45 -2535.15 -3552.63 -3546.25 

Student t-Copula -2539.78 -2527.17 -3544.26 -3531.51 

Frank -2485.88 -2479.58 -3593.14 -3586.77 

The fitted copula parameters are respectively 𝜗 = 2.54 and 𝜗 = 2.54 for the survival Clayton (269 TAF) 

and Gumbel (365 TAF) copula functions. The estimates of the Kendall’s rank correlation coefficients 

from the fitted copulas respectively equal 0.537 and 0.606, which indicates that the fitted copula functions 

fairly well represent the observed rank correlation (0.564 and 0.628, respectively for 269 and 365 TAF 

threshold; Table 6-9). 

The joint return period of an event with severity 𝑥 and duration 𝑦 is calculated as:  

 𝑇𝑗𝑜𝑖𝑛𝑡 =
𝜇

1 − 𝐹(𝑥) − 𝐹(𝑦) + 𝐶(𝑥, 𝑦)
, (6-9) 

with 𝐹(. ) the cumulative distribution function for each margin and 𝜇 the average inter-arrival time. 
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Figure 6-12. Joint return period for thresholds 269 TAF (top) and 365 TAF (bottom) on the Tuolumne River.  

Selected historical droughts are highlighted in the figure.  Contour lines are shown as dashed black lines with 

labels. 
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Table 6-11. Calculated joint return period for thresholds 269 and 365 TAF.  

 Threshold: 269 TAF Threshold: 365 TAF 

Drought Event Joint Return Period [Year] Joint Return Period [Year] 

1976-1977 98 61 

1987-1992 772 537 

2012-2015 236 176 

The estimates of the return period for the most important historical droughts are shown in Table 6-11. 

Figure 6-12 shows the contour return periods based on severity and duration.  The 1987-92 drought is 

shown to be the historical drought with the largest return period (772 and 537 years for 269 TAF and 365 

TAF thresholds). The return period of the 1976-77 drought was estimated to 98 years with 269 TAF 

threshold, and to 61 years for 365 TAF threshold. Finally, the return period of the most recent 2012-2015 

drought was estimated to 236 and 176 years, respectively for 269 and 365 TAF threshold.  

 

6.5. Drought return period under climate change 
Impact of changes in precipitation and temperature on drought severity and duration are presented in this 

section.   

6.5.1. Changes in Severity 

Figure 6-13 illustrates the change in drought severity for a sample of scenarios of precipitation changes 

(i.e., -10% and -20%) and temperature changes (i.e., +2°C and +4°C), and for the two considered drought 

thresholds. Table 6-12 gives the estimated return periods for the historical droughts for the precipitation 

and temperature scenarios shown in. 
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Figure 6-13. Effect of precipitation (left) and temperature (right) change on the drought severity frequency. Results 

are shown with 269 TAF (top) and 365 TAF (bottom) drought threshold. The x-axis shows that the absolute value of 

the cumulative deficit and the y-axis shows the estimated return period (years). The 95% confidence intervals are 

shown in shaded areas and are obtained using the bootstrap method. Vertical lines shows the severity of the 

historical droughts obtained using the historical dataset.  

Table 6-12. Effect of precipitation and temperature change on the return periods associated with the severity of the 

historic droughts. Return periods are round off to the nearest 5 years. 

Threshold  

[TAF] 

Drought 

Event 

Changes in Precipitation Changes in Temperature [°C] 

0% -10% -20% 0 +2 +4 

269 

1976-1977 100 45 25 100 105 130 

1987-1992 420 120 45 420 495 675 

2012-2015 180 70 35 180 200 260 

365 

1976-1977 50 30 10 50 50 60 

1987-1992 445 105 20 445 470 575 

2012-2015 135 55 15 140 145 165 

Precipitation change is a significant driver of change for the severity of drought. Any reduction in 

precipitation leads to an increase in frequency of drought severity (i.e., a reduction of the return period of 
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any severity level). For instance, considering the threshold of 269 TAF and a 10% precipitation reduction, 

the severity associated with the 1976-77 becomes roughly twice as more frequent (from 98 to 46 years 

return period). Similarly, the return period associated with the 2012-2015 drought drops from 178 to 69 

years. The changes in return periods for the severities associated with the historical events under a 20% 

precipitation reduction scenario are more drastic. All three highlighted historical droughts see their return 

period fall below 50 years, including the severity associated with the 1987-1992 droughts whose 

estimated return period under baseline climate scenario is larger than 400 years.  

The effect of warming temperature appears to be opposite with an increase in return period for all 

historical droughts. For instance, the return period of the severity associated with the 1987-92 drought 

increase from 420 to 494 years under 2°C warming.  

Similar results are obtained for the 365 TAF threshold, although the change following from a reduction in 

precipitation are more important, and in the case of temperature warming, less important.  

 

6.5.2. Changes in Duration 

Figure 6-14 illustrates the change in drought duration for a sample of scenarios of precipitation changes 

(i.e., -10% and -20%) and temperature changes (i.e., +2°C and +4°C), and for the two considered drought 

thresholds. Table 6-13 gives the estimated return periods for the historical droughts for the scenarios 

shown in Figure 6-14. 

 

Figure 6-14. Effect of precipitation (left) and temperature (right) change on the drought duration frequency. Results 

are shown with 269 TAF (top) and 365 TAF (bottom) drought threshold. The x-axis shows that the drought duration 
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(years) and the y-axis shows the estimated return period (years). The 95% confidence intervals are shown in shaded 

areas and are obtained using the bootstrap method. Vertical lines shows the duration of the historical droughts 

obtained using the historical dataset. 

Table 6-13. Effect of precipitation and temperature change on the return periods associated with the duration of the 

historic droughts.  

Threshold  

[TAF] 

Drought 

Event 

Changes in Precipitation Changes in Temperature [°C] 

0% -10% -20% 0 +2 +4 

269 

1976-1977 40 30 25 40 40 40 

1987-1992 700 170 65 700 700 840 

2012-2015 185 80 45 185 185 205 

365 

1976-1977 30 25 15 30 30 30 

1987-1992 165 70 25 165 160 170 

2012-2015 75 45 20 75 75 80 

Like drought severity, precipitation is the main driver of change in drought duration. Any decrease in 

precipitation makes droughts of any duration more frequent, especially the long ones. For instance, with 

269 TAF threshold, the return period of 2-yr long drought (i.e., 1976-1977) drops from 40 years to 28 

years or 24 years if precipitation decreases by either 10 or 20%, respectively. For long droughts, for 

instance of the 1987-1992 (i.e., 6 years), the return period drops from 700 years to 170 or 70 years with a 

reduction in precipitation of either 10 or 20%, respectively.  

Warming temperature tends to slightly reduce the frequency of droughts with specific duration, although 

the signal is hardly significant. For instance, using 269 TAF threshold and a warming scenario of +4°C, 

the return period of the 1987-92 drought duration (i.e., 6 years) increases from 700 years to 850 years.  

Similar results are obtained for the 365 TAF threshold: a major increase in frequency when precipitation 

decreases, and an insignificant signal under warming conditions.  

 

6.5.3. Changes in Joint Return Period 

The modification of the frequency of drought when accounting for the dependence between severity and 

duration was conducted using copula functions.  The survival Clayton copula was used with the 269 TAF 

threshold while the Gumbel copula was used for the 365 TAF threshold. Note that the return periods 

obtained under baseline climate (i.e., no change in precipitation and temperature) are slightly different 

from the ones presented in Table 6-11 as the ‘combined’ dataset was used in section 6.4 rather than the 

‘stochastic realizations’ dataset’. 

Table 6-14 details for the considered climate scenarios and drought threshold the modification of the 

dependence (i.e., correlation) between drought severity and duration by mean of the Kendall’s rank 

correlation coefficient (𝜏𝑑𝑎𝑡𝑎). It is noted that decreasing precipitation increases the dependence between 
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drought severity and duration (i.e. 𝜏𝑑𝑎𝑡𝑎 increases) while increasing precipitation tends to decrease the 

dependence between drought severity and duration (i.e., 𝜏𝑑𝑎𝑡𝑎 decreases). Warming temperature tends to 

slightly decrease the correlation, although the changes are not as significant as for precipitation changes. 

Although the fitted copula functions for each climate scenarios and thresholds reproduce the Kendall’s 

rank correlation well, they consistently underestimate the correlation (𝜏𝑐𝑜𝑝 compared to 𝜏𝑑𝑎𝑡𝑎).  

Table 6-14. Effect of precipitation and temperature change on the dependence between drought severity and 

duration. The Kendall’s rank correlation coefficients obtained from the fitted copula functions (𝝉𝒄𝒐𝒑) and estimated from the 

identified drought events (𝝉𝒅𝒂𝒕𝒂) are used to assess the dependence between drought severity and duration. The fitted copula 

parameter is given for information only. 

Threshold 
Precipitation  

Scenario 
Temperature 

 Scenario 
Copula 𝝉𝒄𝒐𝒑  𝝉𝒅𝒂𝒕𝒂  

Copula 
Parameter 

269 

ΔP=-20%  ΔT=0°C 

Survival Clayton 

0.674 0.719 2.272 

ΔP=-20%  ΔT=4°C 0.685 0.726 2.387 

ΔP=0%  ΔT=0°C 0.464 0.567 1.732 

ΔP=0%  ΔT=4°C 0.452 0.557 1.651 

ΔP=+20%  ΔT=0°C 0.366 0.451 1.738 

ΔP=+20%  ΔT=4°C 0.334 0.420 1.005 

365 

ΔP=-20%  ΔT=0°C 

Gumbel 

0.758 0.782 2.93 

ΔP=-20%  ΔT=4°C 0.754 0.772 2.64 

ΔP=0%  ΔT=0°C 0.558 0.632 2.26 

ΔP=0%  ΔT=4°C 0.552 0.625 2.23 

ΔP=+20%  ΔT=0°C 0.421 0.522 2.10 

ΔP=+20%  ΔT=4°C 0.399 0.498 1.81 

The effect of precipitation and temperature change on the joint return period of drought severity and 

duration is presented in Table 6-15 and shown as a plot in Figure 6-15. The results are consistent with the 

results discussed for drought severity and duration separately. As was expected, increasing precipitation 

decreases the frequency of drought significantly (i.e., increases the return period). With a 269 TAF 

threshold and under 20% increase precipitation, the reduction in frequency is such that the return periods 

associated with the considered historical droughts become all roughly larger than 20,000 years. However, 

decreasing precipitation leads to significant increase in drought frequency. Under 20% precipitation 

reduction scenario, the return period of all historical droughts gets below 100 years.  

The effect on temperature change on the drought frequency appears to not be linear regardless of it’s 

associated to either a decrease or an increase in precipitation. When combined with a decrease in 

precipitation, the effect of temperature is not significant.  

The main results remain broadly consistent when using 365 TAF threshold. Note that the droughts are 

more frequent using this threshold and the effect of temperature change remain low when compared with 

the increase in frequency following from a reduction in precipitation. 
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Figure 6-15. Joint return period contours for changes in precipitation and temperature for thresholds 269 TAF and 

365 TAF.  Contour colors are different climate scenarios with the historic drought events shown as points.   
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Table 6-15. Effect of precipitation change (ΔP, %) and temperature change (ΔT, °C) on the joint return period 

(years) associated with the severity and duration of the historic droughts for drought thresholds of 269 TAF and 365 

TAF. 

  Joint Return Period (years) 

Threshold Event 
ΔP=-20% ΔP=0% ΔP=+20% 

ΔT=0°C ΔT=4°C ΔT=0°C ΔT=4°C ΔT=0°C ΔT=4°C 

269 

1976-1977 35 35 110 140 19,300 855 

1987-1992 75 70 855 1,160 728,510 1,532,685 

2012-2015 50 50 270 355 61,685 4,655 

365 

1976-1977 15 45 60 65 12,075 425 

1987-1992 25 75 505 635 702,410 62,225 

2012-2015 20 60 170 195 78,515 4,085 

In summary, models indicate that hydrologic drought severity on the Tuolumne River for SFPUC will 

significantly increase with reduction in precipitation but not necessarily with temperature increase. Note 

that the models used (combination of weather generator and hydrologic model) tend to underestimate both 

the frequency of occurrence and severity of droughts, as compared to the observed record (not enough 

droughts occur in the simulated record compared to the historical record). Therefore, it is assumed that the 

frequency of occurrence and severity of hydrologic droughts in the simulated record, with climate change, 

is also underestimated, overstating the RWS water supply reliability. 
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A. Appendix – Parameters for Climate Data Interpolation 
 

Each temperature station was analyzed to develop regressions between stations using the data from 1999-

10-01 through 2016-10-01.  The relationships were used to fill the missing data in the period between 

1969 and the installation of the station.  The relationships were established by first analyzing the 

correlation between the stations.  The station with the highest correlation value is then selected and then a 

basic regression is used to estimate maximum and minimum temperature at the gage.  𝑖 is the selected 

station with target station 𝑠 and is calculated based on equation A-1.  This task was completed by HHWP 

team. 

 𝑇𝑠(𝑡) = 𝑎𝑖,𝑠𝑇𝑖(𝑡) + 𝑏𝑖,𝑠, A-1 

 

 

A.1. Maximum and Minimum Temperature Stations Parameters 
 

 

Table A-1 Maximum temperature coefficients between stations 

  Hetchy Buck Tuolumne Cherry Moccasin Paradise Horse Slide Pinecrest 

Hetchy 1.000 0.894 0.853 0.959 0.923 0.813 0.850 0.846 0.924 

Buck 0.894 1.000 0.827 0.922 0.884 0.838 0.849 0.826 0.887 

Tuolumne 0.853 0.827 1.000 0.894 0.818 0.896 0.931 0.934 0.891 

Cherry 0.959 0.922 0.894 1.000 0.932 0.868 0.898 0.892 0.957 

Moccasin 0.923 0.884 0.818 0.932 1.000 0.790 0.824 0.810 0.891 

Paradise 0.813 0.838 0.896 0.868 0.790 1.000 0.933 0.972 0.872 

Horse 0.850 0.849 0.931 0.898 0.824 0.933 1.000 0.965 0.902 

Slide 0.846 0.826 0.934 0.892 0.810 0.972 0.965 1.000 0.905 

Pinecrest 0.924 0.887 0.891 0.957 0.891 0.872 0.902 0.905 1.000 

 

Table A-2 Relationship between stations (slope and intercept).  Dependent variable is in column heading.  For 

example: 𝐻𝑒𝑡𝑐ℎ𝑦 = 0.924 × 𝐵𝑢𝑐𝑘 + 1.045 

(a) Slope 

  Hetchy Buck Tuolumne Cherry Moccasin Paradise Horse Slide Pinecrest 

Hetchy 1.000 0.894 0.853 0.959 0.923 0.813 0.850 0.846 0.924 

Buck 0.894 1.000 0.827 0.922 0.884 0.838 0.849 0.826 0.887 

Tuolumne 0.853 0.827 1.000 0.894 0.818 0.896 0.931 0.934 0.891 

Cherry 0.959 0.922 0.894 1.000 0.932 0.868 0.898 0.892 0.957 

Moccasin 0.923 0.884 0.818 0.932 1.000 0.790 0.824 0.810 0.891 
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Paradise 0.813 0.838 0.896 0.868 0.790 1.000 0.933 0.972 0.872 

Horse 0.850 0.849 0.931 0.898 0.824 0.933 1.000 0.965 0.902 

Slide 0.846 0.826 0.934 0.892 0.810 0.972 0.965 1.000 0.905 

Pinecrest 0.924 0.887 0.891 0.957 0.891 0.872 0.902 0.905 1.000 
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(b) Intercept 

  Hetchy Buck Tuolumne Cherry Moccasin Paradise Horse Slide Pinecrest 

Hetchy 0.000 6.603 0.703 -3.044 10.342 -2.031 -3.542 -4.781 0.297 

Buck 1.045 0.000 -0.722 -4.560 9.036 -5.079 -5.741 -6.752 -1.081 

Tuolumne 9.125 13.119 0.000 3.734 18.540 -0.999 -2.400 -3.703 5.558 

Cherry 5.558 9.788 2.913 0.000 14.409 -0.237 -1.535 -3.254 3.316 

Moccasin -4.213 0.063 -3.859 -9.439 0.000 -6.877 -8.299 -10.367 -5.363 

Paradise 14.582 16.923 6.588 9.069 23.798 0.000 1.256 -4.963 10.397 

Horse 13.865 17.059 6.123 8.639 23.160 2.238 0.000 -0.720 9.953 

Slide 15.337 19.947 7.130 10.953 26.106 6.277 2.458 0.000 11.874 

Pinecrest 4.819 9.080 1.391 -0.574 13.888 -1.954 -3.259 -5.265 0.000 

 

Table A-3 Minimum temperature coefficients between stations 

  Hetchy Buck Tuolumne Cherry Moccasin Paradise Horse Slide Pinecrest 

Hetchy 1.000 0.860 0.786 0.910 0.870 0.804 0.795 0.810 0.886 

Buck 0.860 1.000 0.778 0.853 0.828 0.789 0.785 0.784 0.832 

Tuolumne 0.786 0.778 1.000 0.807 0.720 0.884 0.905 0.927 0.792 

Cherry 0.910 0.853 0.807 1.000 0.809 0.848 0.822 0.854 0.859 

Moccasin 0.870 0.828 0.720 0.809 1.000 0.723 0.740 0.717 0.851 

Paradise 0.804 0.789 0.884 0.848 0.723 1.000 0.916 0.966 0.807 

Horse 0.795 0.785 0.905 0.822 0.740 0.916 1.000 0.954 0.800 

Slide 0.810 0.784 0.927 0.854 0.717 0.966 0.954 1.000 0.799 

Pinecrest 0.886 0.832 0.792 0.859 0.851 0.807 0.800 0.799 1.000 

 

Table A-4 Relationship between stations (slope and intercept).  Dependent variable is in column heading.  For 

example: 𝐻𝑒𝑡𝑐ℎ𝑦 = 0.957 × 𝐵𝑢𝑐𝑘 + 2.675 

(a) Slope 

  Hetchy Buck Tuolumne Cherry Moccasin Paradise Horse Slide Pinecrest 

Hetchy 1.000 0.898 0.956 0.970 0.925 1.010 1.009 0.976 0.834 

Buck 0.957 1.000 0.983 0.969 0.932 1.033 1.036 0.981 0.834 

Tuolumne 0.822 0.792 1.000 0.847 0.780 0.982 0.998 0.990 0.731 

Cherry 0.938 0.880 0.953 1.000 0.877 1.020 1.010 0.993 0.807 

Moccasin 0.941 0.889 0.923 0.922 1.000 0.966 0.982 0.934 0.824 

Paradise 0.796 0.764 0.900 0.831 0.749 1.000 0.962 0.981 0.707 

Horse 0.787 0.758 0.907 0.815 0.754 0.953 1.000 0.961 0.700 

Slide 0.830 0.799 0.936 0.860 0.768 0.985 0.992 1.000 0.734 

Pinecrest 1.062 0.997 1.084 1.064 1.033 1.143 1.143 1.089 1.000 

 



121 

 

(b) Intercept 

  Hetchy Buck Tuolumne Cherry Moccasin Paradise Horse Slide Pinecrest 

Hetchy 0.000 3.610 -20.074 0.295 5.438 -17.531 -19.808 -18.838 -0.494 

Buck 2.675 0.000 -20.387 1.131 5.934 -17.657 -20.096 -18.381 0.188 

Tuolumne 25.843 25.646 0.000 24.281 28.923 5.294 2.598 2.301 20.067 

Cherry 3.671 5.318 -18.945 0.000 8.429 -16.919 -18.798 -18.879 1.486 

Moccasin 0.555 2.088 -20.605 0.375 0.000 -17.690 -20.747 -18.837 -1.857 

Paradise 22.504 22.521 -2.245 20.546 25.934 0.000 -1.323 -4.257 17.131 

Horse 24.574 24.440 -0.297 22.891 27.564 3.484 0.000 0.388 18.944 

Slide 24.000 24.061 -0.536 22.562 27.474 5.176 0.756 0.000 18.866 

Pinecrest 5.514 7.010 -17.224 4.443 8.747 -14.447 -16.788 -15.680 0.000 
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B. PRMS Modules for Upcountry watershed  
The summary of PRMS modules selected for representing various hydrologic processes of the Upcountry 

watershed systems is provided in Table B-1. The modules highlighted in bold are ones selected over other 

available modules, details of which are further discussed in the following sections.  

Table B-1 Summary of hydrologic processes and modules for the Upcountry hydrologic models (modules in bold are 

the selected modules over other available modules) 

Hydrologic Process Used Module Description 

Basin Definition Process basin Defines watershed-wide and HRU-based 

physical parameters and variables 

Cascading Flow Process cascade Determines computational order of HRUs 

for routing flow. 

Solar Table Process soltab Computes potential solar radiation and 

sunlight hours for each HRUs for each day 

of the year 

Time Series Data Process obs Reads and stores observed data from all 

specified measurement stations 

Combined Climate Distribution 

Process 

xyz_dist Distributes precipitation and temperature to 

each HRU by using a multiple linear 

regression of measured data 

Solar Radiation Distribution 

Process 

ddsolrad Distributed solar radiation to each HRU and 

estimates missing solar radiation data using 

maximum temperature per degree-day 

relations 

Potential Evapotranspiration 

Process 

potet_jh Computes the potential evapotranspiration 

by using the Jensen-Haise formulation 

Canopy Interception Process intcp Computes volume of intercepted 

precipitation, evaporation from intercepted 

precipitation, and throughfall that reaches 

the soil or snowpack 

Snow Process snowcomp Simulates snowpack and snow accumulation 

and depletion process by using an energy-

budget approach 

Surface Runoff Process srunoff_smidx Computes surface runoff and infiltration for 

each HRU by using a nonlinear variable-

source-area method allowing for cascading 
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flow 

Soil-zone Process soilzone Computes inflow and outflows from soil 

zone of each HRU including infiltration, 

groundwater, and upslope HRUs, outflows 

to gravity drainage, interflow, and surface 

runoff to down-slope HRUs 

Groundwater Process gwflow Sums inflow and outflow from PRMS 

groundwater reservoirs 

Streamflow Process muskingum Routes water between segments in the 

system using Muskingum routing 

 

B.1. Combined Climate Distribution Module (xyz_dist) 

The xyz_dist module uses a three-dimensional, multiple-linear regression based on longitude, latitude, 

and elevation to distribute temperature and precipitation data from two or more stations.  It was initially 

developed as a method to statistically downscale precipitation and temperature data from atmospheric 

models for each HRU.   

The module develops multiple linear-regression relationships for each climate variable based on stations, 

grid cell elevation, longitude, and latitude, to calculate precipitation, maximum air temperature, and 

minimum air temperature.  A total of three parameters (ppt_lapse, max_lapse, and min_lapse, for 

precipitation, maximum, and minimum air temperature respectively) that are distributed by three 

dimensions (latitude, longitude, and elevation) and monthly mean values from the climate stations located 

near the watershed (Jan through Dec) are used in the climate distribution module to distribute the climate 

variables across all HRUs.  The general equation below describes a plane in three dimensional space with 

multiple linear regression parameters that intersects the climate variable (CV) axis at 𝑏0. 

𝐶𝑉 = (𝑙𝑎𝑝𝑠𝑒𝑥 × 𝑥𝑠𝑡𝑎) + (𝑙𝑎𝑝𝑠𝑒𝑦 × 𝑦𝑠𝑡𝑎) + (𝑙𝑎𝑝𝑠𝑒𝑧 × 𝑧𝑠𝑡𝑎) + 𝑏0 

 Where: 

𝑙𝑎𝑝𝑠𝑒𝑥 = Value of ppt_lapsexmonth max_lapsexmonth
⁄ min_lapsexmonth

⁄  

𝑙𝑎𝑝𝑠𝑒𝑦 = Value of ppt_lapseymonth
max_lapseymonth

⁄ min_lapseymonth
⁄  

𝑙𝑎𝑝𝑠𝑒𝑧 = Value of ppt_lapsezmonth max_lapsezmonth
⁄ min_lapsezmonth

⁄  

The climate variable equation is calculated from a set of stations specified by the psta_nuse or tsta_nuse 

and a different set of stations can be used for each day.  If no stations have valid values on a particular 

day, then the mean monthly values are used.  𝑏0 is calculated according to the following equation and 

climate variable (for equation example, precipitation is shown but this is the same for temperature). 
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𝑏0 = 𝑝𝑝𝑡_𝑚𝑒𝑎𝑛 − (𝑝𝑝𝑡_𝑙𝑎𝑝𝑠𝑒𝑥,𝑚𝑜𝑛𝑡ℎ × 𝑥𝑚𝑒𝑎𝑛) − (𝑝𝑝𝑡_𝑙𝑎𝑝𝑠𝑒𝑦,𝑚𝑜𝑛𝑡ℎ × 𝑦𝑚𝑒𝑎𝑛)

− (𝑝𝑝𝑡_𝑙𝑎𝑝𝑠𝑒𝑧,𝑚𝑜𝑛𝑡ℎ × 𝑧𝑚𝑒𝑎𝑛) 

Then based on the climate variable, the values can be distributed for each HRU by: 

ℎ𝑟𝑢𝑝𝑝𝑡𝐻𝑅𝑈
= (𝑝𝑝𝑡_𝑙𝑎𝑝𝑠𝑒𝑥,𝑚𝑜𝑛𝑡ℎ × ℎ𝑟𝑢_𝑥𝐻𝑅𝑈) + (𝑝𝑝𝑡_𝑙𝑎𝑝𝑠𝑒𝑦,𝑚𝑜𝑛𝑡ℎ × ℎ𝑟𝑢_𝑦𝐻𝑅𝑈)

+ (𝑝𝑝𝑡_𝑙𝑎𝑝𝑠𝑒𝑧,𝑚𝑜𝑛𝑡ℎ × ℎ𝑟𝑢_𝑧𝐻𝑅𝑈) + 𝑏0 

The dependent and independent variables in the regression are then transformed by subtracting the mean 

(ppt_add, x_add, y_add, and z_add) and dividing by the standard deviation (ppt_div, x_div, y_div, z_div) 

to reduce the effects of units, magnitude, and inconsistency of the study area. 

 

B.2. Solar Radiation Distribution Module (ddsolrad) 

The ddsolrad module computes shortwave solar radiation with a modified degree-day method.  The ratio 

of the actual-to-potential radiation for horizontal surface is obtained based on the relationship between the 

monthly maximum air temperature and the degree-day coefficient.  The short wave radiation for each 

HRU is calculated by: 

𝑠𝑤𝑟𝑎𝑑𝐻𝑅𝑈 =
𝑠𝑜𝑙𝑓𝐻𝑅𝑈 × 𝑠𝑜𝑙𝑡𝑎𝑏_𝑝𝑜𝑡𝑠𝑤𝐻𝑅𝑈

cos(arctan(ℎ𝑟𝑢_𝑠𝑙𝑜𝑝𝑒𝐻𝑅𝑈))
 

For days with precipitation greater than the monthly parameter value ppt_rad_adj, sward is adjusted 

according to the following equation: 

𝑠𝑤𝑟𝑎𝑑𝐻𝑅𝑈 = 𝑠𝑤𝑟𝑎𝑑𝐻𝑅𝑈 × 𝑟𝑎𝑑_𝑎𝑑𝑗 

 Where: 

𝑟𝑎𝑑_𝑎𝑑𝑗 is 𝑟𝑎𝑑𝑗_𝑠𝑝𝑝𝑡 for summer days and 𝑟𝑎𝑑𝑗_𝑤𝑝𝑝𝑡 for winter. 

 

B.3. Potential Evapotranspiration Module (potet_jh) 

The potet_jh module uses the modified Jensen-Haise formulation to compute the potential 

evapotranspiration for each HRU.  This is computed as a function of air temperature, solar radiation, and 

the coefficients jh_coef and jh_coef_hru, which can be estimated by using regional air temperature, 

elevation, and saturation vapor pressure.  This is calculated per HRU by: 

𝑝𝑜𝑡𝑒𝑡𝐻𝑅𝑈 = 𝑗ℎ_𝑐𝑜𝑒𝑓𝑚𝑜𝑛𝑡ℎ × (𝑡𝑎𝑣𝑔𝑓𝐻𝑅𝑈 − 𝑗ℎ_𝑐𝑜𝑒𝑓_ℎ𝑟𝑢𝐻𝑅𝑈) ×
𝑠𝑤𝑟𝑎𝑑𝐻𝑅𝑈

2.54 × 𝜆𝐻𝑅𝑈
  

𝜆𝐻𝑅𝑈 = 597.3 − (0.5653 × 𝑡𝑎𝑣𝑔𝑓𝐻𝑅𝑈) 

 Where: 

𝜆𝐻𝑅𝑈 is the latent heat of vaporization on the HRU. 
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The air temperature parameter (jh_coef_hru) used in Jensen-Haise can be estimated for each HRU: 

𝑗ℎ_𝑐𝑜𝑒𝑓_ℎ𝑟𝑢𝐻𝑅𝑈 = 27.5 − [0.25 × (𝜌ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝 − 𝜌𝑙𝑜𝑤 𝑡𝑒𝑚𝑝)] −
ℎ𝑟𝑢_𝑒𝑙𝑒𝑣𝐻𝑅𝑈

1000
 

 Where: 

𝜌ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝 is the saturated vapor pressure for the mean maximum air temperature for the warmest month 

of the year in millibars. 

𝜌𝑙𝑜𝑤 𝑡𝑒𝑚𝑝 is the saturated vapor pressure for the mean minimum air temperature for the warmest month of 

the year in millibars. 

 

B.4. Surface Runoff Module (srunoff_smidx) 

The module srunoff_smidx computes the surface runoff from infiltration excess and soil saturation by 

using a non-linear, variable-source-area method, where the runoff generating area of the watershed 

surface varies in location and size over time.  The module configured for the Up Country region has two 

computational sections, which is broken down into impervious storage and evaporation section and 

Hortonian surface runoff and infiltration section. 

• Impervious Storage and Evapotranspiration 

When the sum of the rain throughfall, snowmelt, and the antecedent impervious storage (avail_water) 

exceeds the retention storage capacity on the impervious portion of an HRU for a time step, the 

impervious Hortonian surface runoff is calculated.  Water beyond the impervious storage capacity 

(imperv_stor_max) is retained until it is evaporated and the Hortonian surface runoff from the impervious 

portion of an HRU (hru_sroffi) for each time step is calculated according to: 

𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 = 𝑖𝑚𝑝𝑒𝑟𝑣_𝑠𝑡𝑜𝑟𝐻𝑅𝑈
𝑡−1 + 𝑛𝑒𝑡_𝑟𝑎𝑖𝑛𝐻𝑅𝑈 + 𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡𝐻𝑅𝑈 

If 𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 > 𝑖𝑚𝑝𝑒𝑟𝑣_𝑠𝑡𝑜𝑟_𝑚𝑎𝑥𝐻𝑅𝑈 is true, t hen the surface runoff for a single HRU is calculated. 

ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑖𝐻𝑅𝑈 = (𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 − 𝑖𝑚𝑝𝑒𝑟𝑣_𝑠𝑡𝑜𝑟_𝑚𝑎𝑥𝐻𝑅𝑈) × ℎ𝑟𝑢_𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑖𝑚𝑝𝑒𝑟𝑣𝐻𝑅𝑈 

However, if the condition above is not true, 

ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑖𝐻𝑅𝑈 = 0 

Evaporation for the impervious section of the HRU is based on the available water and unsatisfied 

potential evapotranspiration volumes.  They’re calculated by: 

𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 = 𝑖𝑚𝑝𝑒𝑟𝑣_𝑠𝑡𝑜𝑟𝐻𝑅𝑈
𝑡−1 + 𝑛𝑒𝑡_𝑟𝑎𝑖𝑛𝐻𝑅𝑈 + 𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡𝐻𝑅𝑈 −

ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑖𝐻𝑅𝑈

ℎ𝑟𝑢_𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑖𝑚𝑝𝑒𝑟𝑣𝐻𝑅𝑈
 

𝑎𝑣𝑎𝑖𝑙_𝑒𝑡 = 𝑝𝑜𝑡𝑒𝑡𝐻𝑅𝑈 − 𝑠𝑛𝑜𝑤_𝑒𝑣𝑎𝑝𝐻𝑅𝑈 − ℎ𝑟𝑢_𝑖𝑛𝑡𝑐𝑝𝑒𝑣𝑎𝑝𝐻𝑅𝑈 − 𝑑𝑝𝑟𝑠𝑡_𝑒𝑣𝑎𝑝_ℎ𝑟𝑢𝐻𝑅𝑈 

If 𝑎𝑣𝑎𝑖𝑙_𝑒𝑡 ≥ 𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟, the evaporation from the impervious portion of the HRU is computed by: 
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ℎ𝑟𝑢_𝑖𝑚𝑝𝑒𝑟𝑣𝑒𝑣𝑎𝑝𝐻𝑅𝑈 = 𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 × (1 − 𝑠𝑛𝑜𝑤𝑐𝑜𝑣_𝑎𝑟𝑒𝑎𝐻𝑅𝑈) × ℎ𝑟𝑢_𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑖𝑚𝑝𝑒𝑟𝑣𝐻𝑅𝑈 

If 𝑎𝑣𝑎𝑖𝑙_𝑒𝑡 < 𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟, then the evaporation from the impervious portion for an HRU for the time 

step is calculated by: 

ℎ𝑟𝑢_𝑖𝑚𝑝𝑒𝑟𝑣𝑒𝑣𝑎𝑝𝐻𝑅𝑈 = 𝑎𝑣𝑎𝑖𝑙_𝑒𝑡 × (1 − 𝑠𝑛𝑜𝑤𝑐𝑜𝑣_𝑎𝑟𝑒𝑎𝐻𝑅𝑈) × ℎ𝑟𝑢_𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑖𝑚𝑝𝑒𝑟𝑣𝐻𝑅𝑈 

Storage on the impervious portion of the HRU is calculated by: 

ℎ𝑟𝑢_𝑖𝑚𝑝𝑒𝑟𝑣𝑠𝑡𝑜𝑟𝐻𝑅𝑈 = ℎ𝑟𝑢_𝑖𝑚𝑝𝑒𝑟𝑣𝑠𝑡𝑜𝑟𝐻𝑅𝑈
𝑡−1 − ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑖𝐻𝑅𝑈 − ℎ𝑟𝑢_𝑖𝑚𝑝𝑒𝑟𝑣𝑒𝑣𝑎𝑝𝐻𝑅𝑈 +

(𝑛𝑒𝑡_𝑟𝑎𝑖𝑛𝐻𝑅𝑈 + 𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡𝐻𝑅𝑈) × ℎ𝑟𝑢_𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑖𝑚𝑝𝑒𝑟𝑣𝐻𝑅𝑈  

• Pervious Hortonian Surface Runoff and Infiltration 

The infiltration excess of each HRU happens when the throughfall and snowmelt for the infiltration 

exceeds the capacity of the soil.  Therefore, the Hortonian surface runoff of an HRU is calculated by: 

ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑝𝐻𝑅𝑈 = 𝑐𝑎_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × (𝑢𝑝𝑠𝑙𝑜𝑝𝑒_ℎ𝑜𝑟𝑡𝑜𝑛𝑖𝑎𝑛𝐻𝑅𝑈 + 𝑛𝑒𝑡_𝑟𝑎𝑖𝑛𝐻𝑅𝑈 + 𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡𝐻𝑅𝑈) 

 where: 

𝑐𝑎𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the fractional variable-source area for the previous portion of an HRU 

For the non-linear surface runoff model, the antecedent soil-moisture content is computed of the capillary 

reservoir by: 

𝑎𝑣𝑎𝑖𝑙_𝑒𝑡 = 𝑝𝑜𝑡𝑒𝑡𝐻𝑅𝑈 − 𝑠𝑛𝑜𝑤_𝑒𝑣𝑎𝑝𝐻𝑅𝑈 − ℎ𝑟𝑢_𝑖𝑛𝑡𝑐𝑝𝑒𝑣𝑎𝑝𝐻𝑅𝑈 − 𝑑𝑝𝑟𝑠𝑡_𝑒𝑣𝑎𝑝_ℎ𝑟𝑢𝐻𝑅𝑈 

𝑐𝑎_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑚𝑖𝑑𝑥_𝑐𝑜𝑒𝑓𝐻𝑅𝑈 × (10)𝑠𝑚𝑖𝑑𝑥_𝑒𝑥𝑝𝐻𝑅𝑈×𝑠𝑚𝑖𝑑𝑥 

 

If 𝑐𝑎_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 > 𝑐𝑎𝑟𝑒𝑎_𝑚𝑎𝑥𝐻𝑅𝑈, then 𝑐𝑎_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑎𝑟𝑒𝑎_𝑚𝑎𝑥𝐻𝑅𝑈.   

In situations where no snowpack exists, infiltration to the area is calculated as: 

𝑖𝑛𝑓𝑖𝑙𝐻𝑅𝑈 = (𝑢𝑝𝑠𝑙𝑜𝑝𝑒_ℎ𝑜𝑟𝑡𝑜𝑛𝑖𝑎𝑛𝐻𝑅𝑈 + 𝑛𝑒𝑡_𝑟𝑎𝑖𝑛𝐻𝑅𝑈 + 𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡𝐻𝑅𝑈 − ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑖𝐻𝑅𝑈

− ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑝𝐻𝑅𝑈) × (1 − ℎ𝑟𝑢_𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑖𝑚𝑝𝑒𝑟𝑣𝐻𝑅𝑈) 

In situations where there is a snowpack, surface runoff and infiltration of the previous portion of the HRU 

are adjusted on the basis of the parameter snowinfil_max and the capillary reservoir is represented as: 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑠𝑜𝑖𝑙_𝑚𝑜𝑖𝑠𝑡_𝑚𝑎𝑥𝐻𝑅𝑈 − 𝑠𝑜𝑖𝑙_𝑚𝑜𝑖𝑠𝑡𝐻𝑅𝑈
𝑡−1  

𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 = 𝑢𝑝𝑠𝑙𝑜𝑝𝑒_ℎ𝑜𝑟𝑡𝑜𝑛𝑖𝑎𝑛𝐻𝑅𝑈 + 𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡𝐻𝑅𝑈 

𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 − 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

 Any additional surface runoff is computed as: 

𝑒𝑥𝑐𝑒𝑠𝑠_𝑖𝑛𝑓𝑖𝑙 = max(0, 𝑎𝑣𝑎𝑖𝑙_𝑤𝑎𝑡𝑒𝑟 − 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑠𝑛𝑜𝑤𝑖𝑛𝑓𝑖𝑙_𝑚𝑎𝑥𝐻𝑅𝑈) 
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If the 𝑒𝑥𝑐𝑒𝑠𝑠_𝑖𝑛𝑓𝑖𝑙 value is greater than 0, the value is also added to ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑝 and the amount of 

water that infiltrated into the capillary reservoir for the HRU is defined by: 

𝑖𝑛𝑓𝑖𝑙𝐻𝑅𝑈 = 𝑠𝑛𝑜𝑤𝑖𝑛𝑓𝑖𝑙_𝑚𝑎𝑥𝐻𝑅𝑈 + 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐻𝑅𝑈 

The total Hortonian surface runoff for each HRU is then calculated as: 

ℎ𝑜𝑟𝑡𝑜𝑛𝑖𝑎𝑛_𝑓𝑙𝑜𝑤𝐻𝑅𝑈 = ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑝𝐻𝑅𝑈 + ℎ𝑟𝑢_𝑠𝑟𝑜𝑓𝑓𝑖𝐻𝑅𝑈 

 

B.5. Streamflow Module (Muskingum) 

The Muskingum routing module uses stream networks as a conceptualized single-direction sequence of 

connected stream segments as specified by the parameter tosegment.  A stream segment is associated with 

each one-plane HRU or the left and right bank HRUs as specified by hru_segment parameter.  The 

Muskingum routing equation assumes a linear relationship between storage and the segment inflow 

characteristics (seg_inflow) and segment outflow (seg_outflow).  Storage in a stream segment for the 

internal time step is calculated by: 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡 = 𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡

× ((𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑠𝑒𝑔_𝑖𝑛𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡 ) + (1 − 𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) × 𝑠𝑒𝑔_𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑡 ) 

The routing function assumes the average flow during the internal time step is equal to the average flow at 

the start and the end times.  Therefore, the continuity equation is then expressed as: 

∆𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡 = 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑡 − 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡−1  

∆𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡

= (
𝑠𝑒𝑔_𝑖𝑛𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑡 + 𝑠𝑒𝑔_𝑖𝑛𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡−1

2
) × ∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡

− (
𝑠𝑒𝑔_𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑡 + 𝑠𝑒𝑔_𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡−1

2
) × ∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡 

The segment outflow is then solved for the internal time step by: 

𝑠𝑒𝑔𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡

= (𝑐0𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑠𝑒𝑔_𝑖𝑛𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡 ) + (𝑐1𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑠𝑒𝑔_𝑖𝑛𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑡−1 )

+ (𝑐2𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑠𝑒𝑔_𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑡−1 ) 

 Where: 

𝑐0𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
−(𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) +

∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡

2

(𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) − (𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) +
∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡

2
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𝑐1𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
(𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) +

∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡

2

(𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) − (𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) +
∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡

2

 

𝑐2𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 − (𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) −

∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡

2

𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 − (𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑥_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡) +
∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡

2

 

The internal time step (∆𝑡) is calculated for each stream segment according to: 

∆𝑡𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = [
24

[
24

𝑘_𝑐𝑜𝑒𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡
]
] 

The travel time (in hours) is rounded down to an even divisor of 24 hours due to the PRMS system being 

restricted to daily time steps.  This also means the travel time can never be greater than 24 hours. 

 

C. Appendix – Results of Hetch Hetchy and Cherry-Eleanor PRMS 

Hydrology Model Calibrations 
 

The implementation of PRMS used by HHWP has 129 parameters, controlling snow accumulation and 

melt, evapotranspiration, water storage and flux, and streamflow routing. Of these parameters, 56 are 

distributed amongst the HRUs, 6 characterize the temperature sensors, 6 characterize the precipitation 

gauges, 36 are universal across the model domain, 17 vary monthly, 7 are distributed by subbasin or river 

segment, and 1 characterizes the snow depletion curves. A number of data sources and methods were used 

to determine parameter values in PRMS. 

1) A Digital Elevation Model (DEM) of the basin draining into the Hetch Hetchy Reservoir was 

used to delineate the HRUs based on surface topography. Once the HRUs were delineated, HRU 

area, and HRU average slope, aspect, latitude and longitude were determined from analysis of the 

DEM. 

2) Real time measurements were used to determine some parameters, including earliest and latest 

dates of snow melt initiation (melt_look and melt_force) and temperature and precipitation lapse 

rates.  

3) ASO snow on and snow off acquisitions were used to determine a set of parameters, including 

the vegetation cover types, summer and winter cover densities, and the percent impervious of 

each HRU.  

4) The PRMS calibration of the Merced Basin, the closest basin to the south of the Tuolumne was 

used to determine some parameters. These parameters were assumed to be the same in the 

Tuolumne as in the Merced.  
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5) Some parameters were assumed to match the default values. These were parameters that either 

did not greatly affect flows or snow pack (as determined in the sensitivity analysis above), or 

were difficult to determine / distribute / calibrate. 

6) Calibration to snow pillow and snow survey data was used to determine parameters that were 

not distributed, and controlled snow accumulation and melt.  

7) Calibration to ASO snow data from 20113-2015 was used to determine distributed parameters 

controlling snow accumulation and melt.  

8) Calibration to annual inflows into Hetch Hetchy Reservoir was used to determine parameters 

that affect seasonal and annual water balance.  

9) Calibration to storm to seasonal streamflow patterns was used to determine the final 

set of parameters. 

 

C.4. Parameters Derived from DEMs 

18 parameters were directly derived from Lidar based DEMs of the Tuolumne Basin (Error! Reference 

source not found.). All parameters denoted hru_XXX were derived using ArcGIS and the GISWeasel by 

Bruce McGurk. The parameter jh_coef_hru was calculated as a function of HRU elevation, using the 

formula presented in the PRMS manual (Equation 1-52). The snarea_thresh parameter was derived as a 

function of elevation, using the relationship seen at the Merced watershed. The XXX_div and XXX_add 

parameters were determined using the hru_x, hru_y and hru_z parameters. 

Table C-1: Parameters directly derived from DEMs 

Parameter Dimension Units Value Range 

x_add one meters -5,801.1 

x_div one meters 2,847.5 

y_add one meters -2E+06 

y_div one meters 14,608.6 

z_add one meters 2,048,673 

z_div one meters 27,604.6 

tosegment nsegment none 0 to 16 

subbasin_down nsub none 0 to 16 

hru_area nhru acres 276 to 3,446 

hru_aspect nhru Cardinal direction 21 to 299 

hru_elev nhru feet 3,778 to 11,458 

hru_lat nhru Degrees 37.748 to 38.165 

hru_segment nhru none 1 to 16 

hru_slope nhru feet/feet 0.02 to 1.01 

hru_subbasin nhru none 1 to 16 

hru_type nhru none 0 to 1 

hru_x nhru meters -2,048,719 to-2,002,321 

hru_y nhru meters 1,881,827 to 1,934,207 

jh_coef_hru nhru 1/F 9.2 to 16.88 
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C.5. Parameters Derived from Real Time Measurements 

20 parameters were derived from real time measurement stations (Table C-2), including temperature 

probes, precipitation gauges and snow pillows. These include the locations of the temperature and 

precipitation sensors, which were taken from the cdec.gov website. 

Table C-2: Parameters directly derived from Real Time Measurements 

Parameter Dimension Units Value Range 

den_init one grams/cm3 0.20 

den_max one grams/cm3 0.58 

ppt_div one inches 0.35316 

ppt_add one inches -0.1013 

tmax_div one F 10.7361 

tmax_add one F -60.639 

tmin_div one F 9.99494 

tmin_add one F -33.315 

max_lapse nmonths, nlapse none -1.4589 to -0.9620 

min_lapse nmonths, nlapse none -1.4364 to -0.8836 

ppt_lapse nmonths, nlapse none 0.232 to 0.451 

tsta_elev ntemp feet 938 to 9,200 

tsta_month_max ntemp F 36.16 to 100.53 

tsta_month_min ntemp F 9.26 to 62.23 

tsta_x ntemp meters -2,095,987 to -2,013,855 

tsta_y ntemp meters 1,897,611 to 1,946,363 

psta_elev nrain feet 938 to 8,600 

psta_month_ppt nrain inches 0 

psta_x nrain meters -2,095,987 to -2,013,855 

psta_y nrain meters 1,884,654 to 1,946,363 

melt_force nhru day 55 to 130 

melt_look nhru day 31 to 73 

 

 

C.6. Parameters Derived from ASO data 

Four parameters were derived from ASO data (Table C-3). The ASO lidar flights provided percent of 

each HRU with vegetation greater than 0, 1, 3 and 5 meters. This data was used to approximate the 

vegetation type (cov_type) and summer cover density (covden_sum). Winter cover density (covden_win) 

was assumed to be a function of summer cover density. The percent of each HRU with impervious 

bedrock (hru_percent_imperv) was assumed to be equal to the fraction of the HRU with vegetation less 

than 1 m tall. 

Table C-3: Parameters directly derived from ASO Data 

Parameter Dimension Units Value Range 
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cov_type nhru none 0 to 3 

covden_win nhru none 0 to 0.6 

covden_sum nhru none 0 to 0.9939 

hru_percent_imperv nhru none 0 to 0.3914 

 

C.7. Parameters Taken from Merced Calibration 

Seven Parameters were taken directly from the Merced Calibration (USGS – detailed in PRMS Manual) 

(Table C-4). These parameters control solar radiation and evaporation characteristics and are assumed to 

be consistent between the Merced and Tuolumne basins. 

Table C-4: Parameters Taken from Merced Calibration 

Parameter Dimension Units Value Range 

albset_rna one fraction 0.8 

albset_rnm one fraction 0.6 

albset_sna one fraction 0.05 

albset_snm one fraction 0.2 

radmax one fraction 0.8 

settle_constant one fraction 0.1 

solrad_elev one elev_units 1208 

adjmix_rain nmonths fraction 1 

dday_intcp nmonths dday -50.095 to 5.877 

dday_slope nmonths dday/F 0.305 to 0.790 

tmax_index nmonths F 60.800 to 82.583 

snarea_thresh nhru inches 5 to 37.2385 
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C.8. Parameters Determined Using Professional Expertise 

31 Parameters were set using the professional expertise of the developers of the model. Some are 

straightforward, such as the measurement units (XXX_units). Others were set to the default value, due to 

the difficulties measuring and / or calibrating. Other parameters were set at default because model outputs 

were not sensitive to the parameter value. 

Table C-5: Parameters Determined using Professional Expertise 

Parameter Dimension Units Value Range 

conv_flag one none 0 

elev_units one none 0 

outlet_sta one none 1 

parameter_check_flag one none 0 

precip_units one none 0 

print_freq one none 5 

print_type one none 2 

radj_sppt one decimal fraction 0.44 

radj_wppt one decimal fraction 0.50 

runoff_units one none 0 

temp_units one none 0 

psta_freq_nuse nrain none 0 or 1 

psta_nuse nrain none 0 or 1 

tsta_nuse ntemp none 0 or 1 

adjust_rain nmonths inches 0 

adjust_snow nmonths inches 0 

ppt_rad_adj nmonths inches 0 

rain_code nmonths none 5 

tstorm_mo nmonths month 0 or 1 

obsin_segment nsegment none 0 

segment_flow_init nsegment cfs 0 

segment_type nsegment none 0 

snarea_curve ndeplval decimal fraction 0.00 to 0.99 

gwstor_min ngw inches 0.0 

hru_deplcrv nhru none 1 

snowpack_init nhru inches 0 

soil_type nhru none 1 

tmax_adj nhru F 0 

tmin_adj nhru F 0 

transp_beg nhru month 4 

transp_end nhru month 10 
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C.9. Parameters Derived from Calibration to Snow Pillows and Surveys 

Five parameters were calibrated using Snow Pillow and Survey data. 300,000 Monte Carlo simulations 

were run, using parameter values as determined in sections 7.1-7.5 above, and varying the parameters 

listed in Table C-6. At 300,000 runs, and 5 parameters, each parameter space was dissected ~12.5 times. 

The parameters tmax_allsnow_dist and tmax_allrain_dist are relics of earlier versions of PRMS – it is 

unclear which are actually used in the current version, so both were included and set to identical values as 

tmax_allsnow and tmax_allrain, respectively. After the Monte Carlo runs, the top 100 parameter sets were 

extracted for each Snow Survey and Snow Pillow. The parameter set was in the top 100 for the most sites 

was chosen (parameter set 65,877).  

Closer inspection showed poor fits to the Tuolumne and Dana Meadows snow pillows and Survey sites. It 

was determined that this was due to the well-established rain shadow in the southeast corner of the 

Tuolumne watershed. To increase the fits at these sites, and incorporate the institutional knowledge about 

the rain shadow, the parameter ppt_lapse was manually adjusted until Tuolumne and Dana Meadow 

pillow and survey fits improved (i.e. Figure C-1). The north-south lapse was increased, while the east-

west lapse was decreased. The vertical lapse, as determined using the observed vertical lapse rate in 

measured precipitation, was not adjusted. Total precipitation volume in the watershed was kept constant. 

These edits to the lateral lapse rates were incorporated into the Hetch Hetchy PRMS model but were not 

incorporated into the Cherry / Eleanor model, as the Cherry / Eleanor model domain does not include 

areas influenced by the Tuolumne rain shadow.  

Table C-6: Parameters derived from calibration to snow pillows and surveys 

Parameter Dimension Units Value Range 

emis_noppt one fraction 0.757798 

freeh2o_cap one fraction 0.198345 

potet_sublim one fraction 0.22336 

tmax_allrain one F 39.69274 

tmax_allsnow nmonths F 33.67106 

ppt_lapse (east/west and 

north/south) 

nlapse X 

nmonths 
none -0.3 & 0.3 
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Table C-7: Model fits to Snow Survey and Snow Pillow sites 

Site 

Lowest 
RMSE, All 

Simulations 

RMSE, 
Best Fit 

Scenario 

RMSE, Best 
Fit with 

ppt_lapse 
Edit 

Beehive Meadows 17.3 17.4 17.7 

Bell Meadow 10.7 10.9 9.4 

Bond Pass 6.0 6.0 6.1 

Dana Meadows 7.4 13.9 8.9 

Gianelli Meadow 18.9 19.1 13.1 

Gin Flat 19.9 19.9 24.8 

Horse Meadow 16.3 16.5 15.3 

Huckleberry Lake 18.7 18.7 17.7 

Kerrick Corral 13.5 13.5 11.7 

Lower Kibbie 17.1 17.2 16.6 

Lower Relief Valley 13.6 13.7 10.4 

New Grace Meadow 12.0 12.2 12.1 

Paradise Meadow 20.0 20.0 21.3 

Rafferty Meadows 6.0 8.7 12.6 

Sachse Springs 13.2 13.3 11.2 

Spotted Fawn 21.8 21.9 20.7 

Tuolumne Meadows 7.1 13.3 8.2 

Upper Kibbie 12.3 12.5 11.8 

Vernon Lake 14.3 14.5 15.1 

Wilmer Lake 18.6 18.6 20.0 

Dana Meadows 5.4 11.5 5.2 

Gianelli Meadow 10.3 10.3 7.7 

Gin Flat 8.9 8.9 11.3 

Horse Meadow 10.0 10.1 9.5 

Lower Relief Valley 8.8 8.9 6.8 

Paradise Meadow 10.3 10.4 10.9 

Slide Canyon 6.7 6.8 9.0 

Tuolumne Meadows 3.9 9.5 3.5 

White Wolf 4.6 4.6 7.6 

Average 12.2 13.2 12.3 
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Figure C-1: Model fit to Horse Meadow snow survey and pillow data. Subplots show same day measurement and 

model values for pillow and survey.  

 

Figure C-2: Zoom in on model fit to Horse Meadow survey and pillow data. Note occasional discrepancy between 

pillow and survey data – this is expected due to differences in measurement volume and measurement techniques. 
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Figure C-3: Model fit to Dana Meadows snow survey and pillow data. Subplots show same day measurement and 

model values for pillow and survey. 

 

Figure C-4: Zoom in on model fit to Dana Meadows survey and pillow data. Note good fit to snowmelt timing. 
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C.10. Parameters Derived from Calibration to ASO Data 

Three parameters were calibrated using Airborne Snow Observatory (ASO) data. 100,000 Monte Carlo 

simulations were run, using parameter values as determined in sections 7.1-7.6 above, and varying the 

parameters listed in Table C-6. At 100,000 runs, and 3 parameters, each parameter space was dissected 

~46.4 times. The parameters were all determined to be functions of the winter cover density, as 

determined by analysis of ASO snow off flights. The interception factors were both directly correlated 

with winter cover density, while the radiation transmission coefficient was set to one value throughout the 

domain. 

Table C-8: Parameters derived from calibration to ASO Data 

Parameter Dimension Units Value Range 

rad_trncf nhru decimal fraction 0.6 

snow_intcp nhru inches 0.10933 to 0.28993 

wrain_intcp nhru inches 0.10757 to 0.28527 
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C.11. Parameters Derived from Calibration to Seasonal Streamflow 

12 parameters were calibrated using Seasonal (annual and April through July) Hetch Hetchy Inflows. 

386,000 Monte Carlo simulations were run, using parameter values as determined in sections Error! R

eference source not found.-C.10 above, and varying the parameters listed in Table C-6. At 386,000 runs, 

and 12 parameters, each parameter space was dissected ~2.9 times. These parameters were calibrated to 

the Hetch Hetchy seasonal streamflow, and then carried over to the Cherry / Eleanor model. Model fits to 

Cherry / Eleanor were deemed sufficiently good to not require additional calibration. 

Table C-9: Parameters derived from calibration to seasonal streamflow 

Parameter Dimension Units Value Range 

cecn_coef nmonths 
calories per degree 

Celsius > 0 
3.652001298 

epan_coef nmonths decimal fraction 1.0 and 1.5 

imperv_stor_max nhru inches 0.061581224 

pref_flow_den nhru decimal fraction 0.421961763 

smidx_coef nhru decimal fraction 0.016358179 

smidx_exp nhru 1/inch 0.121748104 

snowinfil_max nhru inches/day 0.738982156 

soil_moist_init nhru inches 0.064509483 

soil_moist_max nhru inches 0.262287965 

soil_rechr_init nhru inches 0.029082688 

soil_rechr_max nhru inches 0.030929524 

srain_intcp nhru inches 0.170156311 

transp_tmax nhru temp_units 733 

  

 

Figure C-5: Modeled and observed April to August inflows to Hetch Hetchy Reservoir. 
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Figure C-6: Modeled and observed April to August inflows to Hetch Hetchy Reservoir 

 

Figure C-7: Monthly modeled and observed inflows to Hetch Hetchy watershed 
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Figure C-8: Monthly modeled and observed inflows to Cherry / Eleanor watershed 
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C.12. Parameters Derived from Calibration to Daily Streamflow 

The remaining 18 parameters were calibrated using daily Hetch Hetchy Inflows. 1,000,000 Monte Carlo 

simulations were run, using parameter values as determined in sections above, and varying the parameters 

listed in Table C-6. At 1,000,000 runs, and 18 parameters, each parameter space was dissected ~2.15 

times. These parameters were calibrated to the Hetch Hetchy daily streamflow, and then carried over to 

the Cherry / Eleanor model. Model fits to Cherry / Eleanor were deemed sufficiently good to not require 

additional calibration. 

Table C-10: Parameters derived from calibration to daily streamflow 

Parameter Dimension Units Value Range 

radadj_intcp one dday 0.1387 

radadj_slope one dday / temp_units 0.5948 

jh_coef nmonths per degrees F 0.0094362 

K_coef nsegment hours 1 to 5.5479 

x_coef nsegment decimal fraction 0.17128 

carea_max nhru decimal fraction 0.4787 

fastcoef_lin nhru fraction / day 0.0439 

fastcoef_sq nhru none 0.6073 

sat_threshold nhru inches 40.7987 

slowcoef_lin nhru fraction / day 0.3835 

slowcoef_sq nhru none 0.2597 

soil2gw_max nhru inches 2.648 

ssr2gw_exp nhru none 2.2745 

ssr2gw_rate nhru fraction / day 0.4241 

ssstor_init nhru inches 10.0714 

gwflow_coef ngw fraction / day 0.1326 

gwsink_coef ngw fraction / day 0.0203 

gwstor_init ngw inches 1.7452 
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Figure C-9: Daily modeled and observed inflows to Hetch Hetchy watershed 

 

 

Figure C-10: Daily modeled and observed inflows to combined Cherry / Eleanor watershed 
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Figure C-11: Dotty Plots of Hetch Hetchy model fits at daily, monthly, annual and seasonal timescales 
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Figure C-12: Dotty Plots of Cherry/Eleanor model fits at daily, monthly, annual and seasonal timescales 

 

 

D. Appendix – Description of SAC-SMA-DS Hydrologic Model 
 

Because of its essential role in the quantification of available water on which water allocations to all 

water sectors is based, very high performance is required of the hydrologic model. Hydrologic model 

residuals propagate through the modeling chain and contribute to a cascade of uncertainty [Wilby and 

Dessai, 2010]. This section describes the development of a distributed, physically-based hydrologic 

model capable of supporting subsequent phases of the climate change vulnerability assessment workflow. 

The amount of usable water for the CVS can be approximated as the quantity of streamflow in the twelve 

largest rivers flowing from the north-east into the Central Valley. These are referred to as the rim inflows. 

In order to estimate those twelve stream flows, the Sacramento Soil Moisture Accounting (SAC-SMA) 

model, a lumped conceptual hydrological model employed by the National Weather Service (NWS) of the 

National Oceanic and Atmospheric Administration (NOAA) to produce river and flash flood forecasts for 

the nation [McEnergy et al., 2005], was coupled with a river routing model to be suitable for modeling a 
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distributed watershed system. It is here referred to as SAC-SMA_DS, denoting the distributed version of 

SAC-SMA. SAC-SMA_DS (Figure D-1) is composed of hydrologic process modules that represent soil 

moisture accounting, evapotranspiration, snow processes, and flow routing. The model operates on a daily 

time step and requires daily precipitation and mean temperature as input variables. 

SAC-SMA_DS includes the Snow 17 module [Anderson, 1976] to account for snow and ice dynamics 

within the 12 rim sub-basins. In this study the hydrologic modeling domains for 12 rim sub-basins are 

spatially disaggregated using climate input grids of 1/8o resolution and 200 m interval elevation bands 

corresponding to the meteorological source data [Maurer et al., 2002]. The runoff from each 

disaggregated area is weighted by its area fraction within the basin to obtain the total basin-wide runoff. 

More details on the model components are provided below by focusing on the descriptions for the 

modules additionally introduced to develop the distributed version of SAC-SMA. 

 

Figure D-1 Schematic of distributed hydrologic model 

 

D.1. Hamon Evapotranspiration Calculation 
The potential evapotranspiration (PET) is derived based on the Hamon method [Hamon, 1961], in which 

daily PET in millimeters (mm) is computed as a function of daily mean temperature and hours of 

daylight: 

PET = Coeff ∙ 29.8 ∙ Ld ∙
0.611∙exp(17.27∙

T

(T+273.3)
)

T+273.3
  (2) 
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where, Ld is the daylight hours per day, T is the daily mean air temperature (oC), and Coeff is a bias 

correction factor. The hours of daylight is calculated as a function of latitude and day of year based on the 

daylight length estimation model suggested by Forsythe et al. [1995]. 

D.2. In-grid Routing: Nash-Cascade Unit Hydrograph 
The within-grid routing process for direct runoff is represented by an instantaneous unit hydrograph 

(IUH) [Nash, 1957], in which a catchment is depicted as a series of N reservoirs each having a linear 

relationship between storage and outflow with the storage coefficient of Kq. Mathematically, the IUH is 

expressed by a gamma probability distribution: 

u(t) =
Kq

(N)
(Kqt)

N−1
exp(−Kqt) (3) 

where, Γ is the gamma function. The within-grid groundwater routing process is simplified as a lumped 

linear reservoir with the storage recession coefficient of Ks.  

D.3. River Channel Routing: Linearized Saint-Venant Equation 
The transport of water in the channel system is described using the diffusive wave approximation of the 

Saint-Venant equation [Lohmann et al., 1998]: 

∂Q

∂t
+ C

∂Q

∂x
− D

∂2Q

∂2x2 = 0 (4) 

where C and D are parameters denoting wave velocity and diffusivity, respectively. 
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E. Appendix – Description of Genetic Algorithm 
John Holland proposed genetic algorithm (GA) in 1975 (McCall, 2005) in order to solve difficult 

optimization problems such as non-linear objective functions or mixed integer programming where some 

components are restricted to be integers.  

This project applies GA in calibration process. GA uses the concept of biological evolution to create their 

algorithm. In brief, good genes in parents can inherit good genes in children; similarly in the context of 

optimization, the best combination of parameters towards the objective function is produced by other 

good combinations of parameters in previous generations. Particularly, in this study, 20 parameters in 

SAC-SMA can be modified to optimize the model performance or the fitness between stream flow 

simulation and observation. Moreover, this study uses Kling-Gupta efficiency (KGE) for assessing the 

performance of hydrologic model. It is between −∞ and 1; where −∞ means no fitness between discharge 

simulation and observation; 1 means perfect fitness between modeled stream flows and observed stream 

flows. KGE is computed as follow (Gupta et al. 2009). 

KGE = 1 - ED 

𝐸𝐷 =  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 

ED: Euclidian distance from the ideal point 

r : linear correlation between simulated flows (Qs) and observed flows (Qo) 

𝛼 =
𝜎𝑄𝑠

𝜎𝑄𝑜
: ratio between the standard deviation of simulated and observed flows 

𝛽 =
𝜇𝑄𝑠

𝜇𝑄𝑜
: ratio between the mean simulated and mean observed flows 

 

F. Appendix – Calibration metrics 
Various calibration metrics are used to evaluate the performance of hydrologic models.  This appendix 

will review Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), and percent bias (PBias).  

Nash-Sutcliffe Efficiency (NSE) is the most widely-used metric to compare simulated and observed 

streamflow values in hydrologic models (Moriasi, et al., 2006). NSE is calculated as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚

𝑡 − 𝑄𝑜
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑜
𝑡 − 𝑄𝑜)

2
𝑇
𝑡=1

 

where Qo is observed discharge (runoff), and Qm is modeled (simulated) discharge, t is the time step, and 

T is the total number of time steps. NSE measures the normalized residual variance, and can range from 

−∞ to 1, with NSE equal to 1 representing a perfect match between modeled and observed discharge. 

Kling-Gupta Efficiency (KGE) is another widely-used metric to compare simulated and observed 

streamflow values in hydrologic models (Gupta, et al., 2009). KGE Is calculated as: 
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𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

 

Where 𝑟 is the Pearson product-moment correlation coefficient between simulated and observed time-

step, 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 are the standard deviations of simulated and observed respectively, and 𝜇𝑠𝑖𝑚 and 𝜇𝑜𝑏𝑠 

are the mean of simulated and observed respectively.    

Percent bias is calculated as: 

𝑝𝐵𝑖𝑎𝑠 =
∑ (𝑄𝑚

𝑡 − 𝑄𝑜
𝑡)𝑇

𝑡=1

∑ (𝑄𝑜
𝑡 )𝑇

𝑡=1

× 100 

where terms are the same as for NSE above. Somewhat counterintuitively, a negative pBias indicates 

underproduction (simulated is greater than observed), whereas a positive pBias indicates overproduction 

(simulated is less than observed). 

 

G. Appendix – Representative Calibration Results of SAC-SMA-DS 
The figures in this Appendix represent calibration results for each of the Alameda and Peninsula 

hydrologic regions.  
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G.1. Alameda Calibration Results 

G.1.1. Arroyo Hondo 

 

Figure G-1 Monthly hydrograph of observed (dotted) and simulated flow (red) - Arroyo Hondo 
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Figure G-2 Comparison of total annual flow - Arroyo Hondo 



152 

 

 

Figure G-3 Comparison of maximum annual average flow (60 days) - Arroyo Hondo 
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G.1.2. Alameda Creek Diversion Dam 

 

Figure G-4 Monthly hydrograph of observed (dotted) and simulated flow (red) - ACDD 
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Figure G-5 Comparison of total annual flow - ACDD 
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Figure G-6 Comparison of maximum annual average flow (60 days) - ACDD 
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G.1.3. San Antonio 

 

Figure G-7 Monthly hydrograph of observed (dotted) and simulated flow (red) - San Antonio 
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Figure G-8 Comparison to total annual flow - San Antonio 
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Figure G-9 Comparison of maximum annual average flow (60 days) - San Antonio 
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G.2. Peninsula Calibration Results 

G.2.1. Basin 1 − Crystal Spring Reservoir watershed 

 

Figure G-10. Basin 1 (Crystal Spring Reservoir watershed) water balance schematic. 

 

 

Figure G-11. Reconstructed observed and simulated streamflow for Crystal Spring Reservoir subwatershed with, 

NSE = 0.98. 

Qoutlet1 + Q1 – Q21 + Q7 – Q22 = Qobs 
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G.2.2. Basin 2 − San Mateo Creek watershed 

 

Figure G-12. Basin 2 (San Mateo Creek watershed) water balance schematic 

 

Figure G-13. Reconstructed observed and simulated streamflow for San Mateo Creek subwatershed, with NSE = 

0.96. 

Qoutlet1 = Qobs 
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G.2.3. Basin 3 − Pilarcitos subwatershed 

 

Figure G-14. Basin 3 (Pilarcitos subwatershed) water balance schematic. 

 

Figure G-15. Reconstructed observed and simulated streamflow for Pilarcitos subwatershed, with NSE = 0.91. 

Qoutlet3 + Q12 – Q23 + Q17 – Q24 = Qobs 
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G.2.4. Basin 4 − Above Upper Crystal Spring watershed 

 

Figure G-16. Basin 4 (Above Upper Crystal Spring watershed) water balance schematic. 

 

Figure G-17. Reconstructed observed and simulated streamflow for Above Upper Crystal Spring subwatershed, with 

NSE = 1.0. 

 

Qoutlet4 = Qobs 
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H. Appendix – Don Pedro PRMS Parameters 
 

H.1. Cover Type (cov_type) 
The University of Maryland’s Department of Geography generated a global land cover classification 

raster in 1998 with images from the AVHRR satellites between 1981 and 1994.  The 1 kilometer pixel 

resolution raster was used to determine the coverage type of the entire Don Pedro watershed.  With 

multiple land types available within each HRU, the majority type present in each HRU is considered the 

dominant coverage type.   

 

 

Figure H-1 Land Coverage Breakdown in Don Pedro 

 

H.2. Cover Density Summer (covden_sum) and Winter (covden_win) 
The ratio of the cover density during the summer is obtained from the ratio of the grid cells present of 

each type of cover within the HRU.  The ratio of the area of the trees over the total area is the value of the 

cover density during the summer.  However, as the winter cover density data is unavailable and the 

periods has less trees with leaves, the cover density should be less than the summer.  To illustrate this 

relationship, a calibrated value is multiplied by the cover density of the summer, which results in the 

following function: 

𝑐𝑜𝑣𝑑𝑒𝑛_𝑤𝑖𝑛 = 𝑉𝑎𝑙𝑢𝑒 × 𝑐𝑜𝑣𝑑𝑒𝑛_𝑠𝑢𝑚  
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H.3. Snow Intercept (snow_intcp) and Rain Intercept (wrain_intcp) 
The snow_intcp parameter is the snow interception storage capacity for the major vegetation type in each 

HRU.  The wrain_intcp is the winter rain interception storage capacity for the major vegetation type in 

each HRU.  These parameters are difficult to collect data on, but they are related to cover density of the 

HRU.  Therefore, a calibrated value is multiplied by the cover density for each HRU and is calculated as: 

𝑠𝑛𝑜𝑤_𝑖𝑛𝑡𝑐𝑝 = 𝑉𝑎𝑙𝑢𝑒 × 𝑐𝑜𝑣𝑑𝑒𝑛_𝑤𝑖𝑛 

𝑤𝑟𝑎𝑖𝑛_𝑖𝑛𝑡𝑐𝑝 = 𝑉𝑎𝑙𝑢𝑒 × 𝑐𝑜𝑣𝑑𝑒𝑛_𝑤𝑖𝑛 

 

H.4. Jensen-Haise Coefficient per HRU (jh_coef_hru) 
The jh_coef_hru value is the air temperature coefficient used in Jensen-Haise potential evapotranspiration 

model used for each HRU.  This estimation is based off of the following equation: 

𝐣𝐡_𝐜𝐨𝐞𝐟_𝐡𝐫𝐮HRU = 27.5 − [0.25 × (𝜌ℎ𝑖𝑔ℎ_𝑡𝑒𝑚𝑝 − 𝜌𝑙𝑜𝑤_𝑡𝑒𝑚𝑝)] −
𝐡𝐫𝐮_𝐞𝐥𝐞𝐯HRU

1000
 

 Where: 

𝜌ℎ𝑖𝑔ℎ_𝑡𝑒𝑚𝑝, 𝜌𝑙𝑜𝑤_𝑡𝑒𝑚𝑝 are the saturation vapor pressure, in millibars, for the mean maximum and 

minimum air temperature for the warmest month of the year.   

This relationship is expressed through the Tetens saturation vapor pressure equation, which is written as: 

𝑃 = 0.61078 exp (
17.27𝑇

𝑇 + 237.3
) 

 Where: 

𝑇 is temperature in degrees Celsius (℃) 

𝑃 is in kilopascals (kPa) 

𝜌ℎ𝑖𝑔ℎ_𝑡𝑒𝑚𝑝 and 𝜌𝑙𝑜𝑤_𝑡𝑒𝑚𝑝 were found by using the Tetens saturation vapor pressure equation on the 

basin-wide average maximum and minimum temperature.   This resulted in a jh_coef_hru value based on 

the change in HRU elevation and is compared to Hetch Hetchy values.  
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Figure H-2 Jensen-Haise coefficient for HRU based on Elevation 
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I. Appendix – Evapotranspiration and jh_coef_hru 
 

The Precipitation-Runoff Modeling System (PRMS) model for the Upcountry watersheds 

uses the Jensen-Haise evapotranspiration formulation.  This method uses two additional 

coefficients, jh_coef and jh_coef_hru, to calculate the potential evapotranspiration for each 

HRU.  The jh_coef_hru parameters, calculated for each HRU, are based on the saturation vapor 

pressure.  This document answers the question of what extent recalculating the jh_coef_hru for 

each different climate scenario has on the outputs of the PRMS hydrologic models.   

 

Quick Key Findings 

- Updating the 𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 increases the representative scenarios to the historic 

average. 

- However, the increased performance to representative scenarios are minor compared to 

other significant factors.   

 

Jensen-Haise Formulation 

The PRMS models are configured to use a modified Jensen-Haise formulation to 

compute potential evapotranspiration.  PET is computed as a function of air temperature, solar 

radiation, and two parameter values labeled within the model as jh_coef and jh_coef_hru, which 

are estimated by using regional air temperature, elevation, and saturation vapor pressure.  The 

calculations are defined by: 

𝑝𝑜𝑡𝑒𝑡𝐻𝑅𝑈 = 𝒋𝒉_𝒄𝒐𝒆𝒇𝑚𝑜𝑛𝑡ℎ × (𝑡𝑎𝑣𝑔𝑓𝐻𝑅𝑈 − 𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈) ×
𝑠𝑤𝑟𝑎𝑑𝐻𝑅𝑈

2.54 × 𝜆𝐻𝑅𝑈
 

𝜆𝐻𝑅𝑈 = 597.3 − (0.5653 × 𝑡𝑎𝑣𝑔𝑓𝐻𝑅𝑈) 

where 

𝜆𝐻𝑅𝑈         is the latent heat of vaporization on the HRU, calories/gram  
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The air temperature parameter, jh_coef_hru, used in the Jensen-Haise potential 

evapotranspiration formula is calculated for each HRU by: 

𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 = 27.5 − [0.25 × (𝜌ℎ𝑖𝑔ℎ_𝑡𝑒𝑚𝑝 − 𝜌𝑙𝑜𝑤_𝑡𝑒𝑚𝑝)] −
𝒉𝒓𝒖_𝒆𝒍𝒆𝒗𝐻𝑅𝑈

1000
 

where 

𝜌ℎ𝑖𝑔ℎ_𝑡𝑒𝑚𝑝, is the saturation vapor pressure, in milibars, for the mean maximum air 

                                    temperature for the warmest month of the year; and 

𝜌𝑙𝑜𝑤_𝑡𝑒𝑚𝑝,           is the saturation vapor pressure, in milibars, for the mean minimum air 

                                     temperature for the warmest month of the year. 

The saturation vapor pressure relationship is expressed through the Tetens formulation, 

which is written as: 

𝜌 = 0.61078 exp (
17.27𝑇

𝑇 + 237.3
) 

where 

𝑇 is temperature in degrees Celsius (℃) 

𝜌 is in kilopascals (kPa) 

The Hetch Hetchy temperature gauge station was used to calculate the 𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 

coefficient for the saturation vapor pressure, where the warmest month of the year is found to be 

July.  The mean maximum and minimum air temperature for July was calculated for the 

coefficient.   

 

Methodology 

 A series of calibrated PRMS hydrologic model runs were completed for Hetchy Hetchy, 

Cherry, Eleanor, and Don Pedro watersheds with the following two scenario conditions for a 

single realization: 

1.  𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 remains consistent with historical values (is not updated as new 

scenarios/climates/data is entered) 

2. 𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 was updated with each climate scenarios and realizations (new climate 

inputs would update the coefficients)  

The outputs were then compared to the related scenarios through three major impacted outputs 

from the PRMS models: 

1. Potential Evapotranspiration (basin-wide and HRU-wide)  
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2. Streamflow (basin-wide) 

 

Results 

 To reduce the number of computational runs of the hydrologic model, the 

𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 were updated each PRMS run for realization 1.  Climate response surfaces 

were generated comparing the annual potential evapotranspiration for the Hetch Hetchy model 

and annual streamflow for the Hetch Hetchy model and the combined Upcountry hydrologic 

models.  Figure 1 and 2 shows the impact of the updated 𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 coefficients as an 

increase in potential evapotranspiration.  The difference between the two configurations does 

show a difference between the two methods, however both outputs are within reasonable 

observed evapotranspiration values as observed in figure 3 for the Hetch Hetchy watershed.  

 

Figure 1. Climate response surface for annual potential evapotranspiration in Hetch Hetchy with 

adjustments for realization 1 
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Figure 2. Climate response surface for annual potential evapotranspiration in Hetch Hetchy 

without adjustments for realization 1 

 

Figure 3. Historic annual potential evapotranspiration values aggregated from MODIS 

 When observing the impact of the updated coefficients however, the differences were 

observed to be much less severe.  While the relative historic annual streamflow is observed to be 

closer to the no change scenario when the coefficient is updated, the absolute difference in 

streamflow is not as significant and is signified even by the buckets of each streamflow 
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partitions.  This concludes that updates to 𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 is an increase in potential 

evapotranspiration.   

 

Figure 4. Climate response surface for annual streamflow in Hetch Hetchy with adjustments for 

realization 1 
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Figure 5. Climate response surface for annual streamflow in Hetch Hetchy without adjustments 

for realization 1 
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Figure 6. Climate response surface for annual streamflow in Hetch Hetchy without adjustments 

for all realizations 

When comparing the climate response surface for annual streamflow in Hetch Hetchy in 

realization 1 to the climate response surface for all realizations without adjustments, the 

difference between the two scenarios are even more marginalized.  These differences are at an 

even smaller scale when The Nash-Sutcliffe Efficiency (NSE) is calculated for the daily 

streamflow values to be 0.98.  The three plots conclude that while updating the 

𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 may improve outputs closer to historic conditions, the improvement is 

marginal and is still able to reflect the natural response signal of the climate within the 

hydrologic models for all realizations.   

 

Figure 7. Climate response surface for annual streamflow in La Grange with adjustments for 

realization 1 
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Figure 8. Climate response surface for annual streamflow in La Grange without adjustments for 

realization 1 

Recall the following relationship for the Upcountry hydrologic models: 

La Grange = Hetch Hetchy + Cherry and Eleanor + Between Hetchy and Don Pedro  

The climate response surfaces figure 7 and 8 for streamflow at La Grange continues to show 

similar trends in a minor increase in performance with no change in the major trends of the 

system.  While there is an improvement to the models’ performances as the 𝒋𝒉_𝒄𝒐𝒆𝒇_𝒉𝒓𝒖𝐻𝑅𝑈 is 

updated per each climate scenario, they are negligible compared to other outside influences.  

However, this should be considered when interpreting the outputs of the PRMS hydrologic 

models.   

 

AET sensitivity to the PRMS parameter “SM_MAX” 
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Figure 9. Sensitivity of Hetch Hetchy annual streamflow to SM_MAX. 
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Figure 10. Climate response surface of Hetch Hetchy annual ET with the maximum value of the 

SM_MAX. 
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J. Appendix – Current Precipitation Index (CPI) Method Writeup 

G.1. Introduction 
San Francisco Public Utilities Commission’s Hetch Hetchy Water and Power (HHWP) Division 

maintains and utilizes a version of the USGS Precipitation Runoff Modeling System (PRMS) for internal 

use in simulating natural Tuolumne River inflows to reservoirs owned and operated by the City and 

neighboring irrigation districts.  Due to system variability, input and parameter uncertainty, long-term 

period of record calibration about the central tendency of inflows, and incomplete process representation 

in the model, biases arise when examining results against daily, monthly, and annually calculated 

observations of reservoir inflow. Thus, an error correction model is desired to improve model 

performance statistics, allowing for increased reliability for simulating system vulnerability to extreme 

weather variability and climate change. Here, a post-processing routine developed for such improvements 

is described. The post-processing model was developed by HHWP to estimate appropriate corrections to 

modeled streamflow and is based on average observed meteorology throughout a calibration period 

(Water Years 1972 to 2015). Meteorology inputs include temperature and precipitation from nine weather 

stations in the Sierra Nevada foothills and mountains ranging from 938 feet to 9,200 feet in elevation, 

within and in the periphery of the Tuolumne River Watershed from which HHWP diverts a portion of 

flow for municipal water supply and hydropower generation.  

G.2. Tuolumne River System and Model Components 
The post-processing model is derived from historical simulated residual errors in flows at four reservoirs 

in the Sierra Nevada: 1) Hetch Hetchy Reservoir, 2) Cherry Reservoir, 3) Lake Eleanor, and 4) Don 

Pedro. The first three reservoirs are considered components of the “Upcountry” system, their outlets 

joining at various confluences downstream before the main Tuolumne River flows into Don Pedro 

Reservoir. Cherry Reservoir and Lake Eleanor inflows are treated as a single node since the two bodies 

are connected via a tunnel through which water is frequently transferred from Eleanor to Cherry. Don 

Pedro is operated by the Modesto and Turlock Irrigation Districts and its outlet stream gage (La Grange) 

is the point at which full natural flow on the Tuolumne River is calculated and water rights partitioning is 

determined. The streamflow observations and simulations for Don Pedro are not direct measurements nor 

simulations of Don Pedro inflows explicitly, but rather they represent the intervening flow between the 

three upcountry reservoirs operated by San Francisco (Hetch Hetchy, Cherry, and Eleanor) and Don 

Pedro Reservoir downstream. Thus, the calculation for simulated unimpaired flow at La Grange is: 

𝑄𝐿𝑎𝐺 =  𝑄𝐻𝐻 + 𝑄𝐶𝐻𝐸𝐿 + 𝑄𝐷𝑃                  (G-1) 

where 𝑄𝐿𝑎𝐺 represents simulated full natural flow on the Tuolumne River at La Grange, 𝑄𝐻𝐻 is inflow to 

Hetch Hetchy Reservoir, 𝑄𝐶𝐻𝐸𝐿 is combined inflow to Cherry Reservoir and Lake Eleanor, and 𝑄𝐷𝑃 is the 

intervening flow above Don Pedro as described above. Observed natural inflows to all reservoirs, along 

with unimpaired flow at La Grange, are calculated daily and used for initial model calibration as well as 

the calibration of the post-processing routine. Observed intervening flows for Don Pedro are inferred by 

rearranging Eqn. 1 for the observed mass balance: 

𝑄𝐷𝑃
𝑜 =  𝑄𝐿𝑎𝐺

𝑜 − 𝑄𝐻𝐻
𝑜 − 𝑄𝐶𝐻𝐸𝐿

𝑜                   (G-2) 

where the superscript 𝑜 denotes observed flow. Residual errors are calculated as the simple difference 

between observed and simulated daily flows at each node and timestep: 
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𝜀𝑄𝐻𝐻    =  𝑄𝐻𝐻
𝑜 −  𝑄𝐻𝐻                   (G-3) 

𝜀𝑄𝐶𝐻𝐸𝐿 =  𝑄𝐶𝐻𝐸𝐿
𝑜 −  𝑄𝐶𝐻𝐸𝐿                  (G-4) 

𝜀𝑄𝐷𝑃     =  𝑄𝐷𝑃
𝑜 −  𝑄𝐷𝑃                   (G-5) 

where 𝜀 denotes the residual error between the observation and simulation estimate for each timestep. It is 

these errors that the post-processing model seeks to correct. 

G.3.1.  Post-Processing Model Input Data 
The post-processing model described here attempts to correlate residual model error with observed 

meteorological data to nudge simulated results closer to observations, generating “corrected” reservoir 

inflow estimates. The model is derived from the relationship between residual error and two 

meteorological input indices. A key assumption is that when forced with input data from future forecasts 

or climate realizations, the identified error structure remains unchanged. 

To begin, observed meteorological data from the PRMS input file are extracted and used to generate 

index temperature and precipitation time series for use in the post-processing routine. For each input 

station, a daily average temperature is taken as the mean of the maximum and minimum observed 

temperature for each timestep. An index temperature is then computed as the average across all nine 

stations’ means: 

𝑇𝜇,𝑡 =  
1

𝑛
∑

𝑇𝑗𝑚𝑎𝑥+𝑇𝑗𝑚𝑖𝑛

2
𝑛
𝑗=1                   (G-6) 

Where 𝑇𝑗𝑚𝑎𝑥 and 𝑇𝑗𝑚𝑖𝑛 denote maximum and minimum daily air temperature at the 𝑗th  station, 

respectively, 𝑛 is the number of stations (9), and 𝑇𝜇,𝑡 is the resulting index air temperature value for 

timestep 𝑡. To generically represent an average antecedent heat index for the basin, these temperature 

index values are further computed as 15-day trailing window summations: 

𝑇𝑠𝑠,𝑡 =  ∑ 𝑇𝜇,𝑖
𝑡
𝑖=𝑡−14                     (G-7) 

where 𝑇𝑠𝑠,𝑡 denotes an index temperature summation at time 𝑡. This variable becomes the first of the two 

predictors that serve as inputs to the post-processing model structure. 

Next, an index precipitation value is computed across all PRMS input stations at each timestep, in a 

similar fashion to the calculation for temperature. The simple average is computed as: 

𝑃𝜇,𝑡 =  
1

𝑛
∑ 𝑃𝑗

𝑛
𝑗=1                        (G-8) 

where 𝑃𝑗 denotes the measured precipitation at station 𝑗 and 𝑃𝜇,𝑡 is the computed precipitation index value 

at timestep 𝑡. To generically represent basin wetness, the precipitation index time series is used to 

compute a “current precipitation index” (CPI) at each timestep (Smakhtin and Masse, 2000): 

𝐶𝑃𝐼𝑡 =  𝐶𝑃𝐼𝑡−1 ∙ 𝛽 +  𝑃𝜇,𝑡                    (G-9) 

where 𝐶𝑃𝐼𝑡 is the current precipitation index for day 𝑡 and 𝛽 is a recession parameter. 𝐶𝑃𝐼𝑡 becomes the 

second predictor for the post-processing model. The CPI is, in and of itself, a method proposed for 
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streamflow estimation and requires a “spin-up” period prior to calibration and simulation. CPI values 

were found to be insensitive to spin-up periods longer than about one year, for values of 𝛽 relatively close 

to 1 (much shorter for smaller 𝛽). Since it is expected that model errors are often proportional to 

streamflow magnitude, the CPI variable is able to capture some of this heteroscedasticity, in addition to 

being a skillful descriptor of overall basin wetness. The CPI parameter 𝛽 was fit iteratively for each 

model, as described later in the document.  

G.3.2.  Post-Processing Model Transformation and Innovation 
Before quantifying the relationship between the described meteorological indices and modeled residual 

errors, the simulation and observation time series are first transformed to reduce heteroscedasticity and 

skewness in the residual error structures (Woldemskel et al., 2018), using the Box-Cox (BC) 

transformation (Box and Cox, 1964). For the case of observed Hetch Hetchy Reservoir inflow, the BC 

transformation is: 

𝑍(𝑄𝐻𝐻
𝑜 ;  𝜆, 𝑐) =  

(𝑄𝐻𝐻
𝑜 +𝑐)𝜆−1

𝜆
                (G-10) 

where 𝑐 is a fixed parameter equal to one one-hundredth of the average observed Hetch Hetchy natural 

streamflow over the calibration period (WY 1972-2015) and 𝜆 is a power parameter that is fixed at 0.2 for 

all simulations, per the recommendation of McInerny et al. (2017). The transformed streamflows are 

computed for all observed and simulated time series as above, with values for 𝑐, variable by catchment as 

denoted in Table G-1. 

Table G-1. c-values for three simulation catchments.  

  Hetch Hetchy Cherry-Eleanor Don Pedro 

Box-Cox c Parameter 10.322 6.718 9.863 

Model residuals are then recomputed in this new transform space, with the residuals herein referred to as 

the innovations. The innovations for transformed Hetch Hetchy Reservoir inflow are: 

𝜂𝐻𝐻 = 𝑍(𝑄𝐻𝐻
𝑜 ) − 𝑍(𝑄𝐻𝐻)                 (G-11) 

where 𝜂𝐻𝐻 represents the innovation. 

G.3.3.  Post-Processing Model Calibration 
Once the observed and modeled streamflow data are transformed to reduce skewness and 

heteroscedasticity in the error distribution, the innovations are then fit to corresponding CPI and index 

temperature summation data by a two-dimensional polynomial function of the form: 

𝜂∗(𝑥, 𝑦) =  𝑝1𝑥𝑦 + 𝑝2𝑦 + 𝑝3𝑥 + 𝑝4              (G-12) 

where 𝜂∗ denotes the modeled innovation estimate, 𝑝𝑛denote fitting parameters for the polynomial model, 

and 𝑥 and 𝑦 are the input variables 𝐶𝑃𝐼 and 𝑇𝑠𝑠, respectively. Using least squares regression, parameters 

are estimated for three temporal intra-seasonal windows for each watershed model, allowing for dynamic 

parameterization for wet/dry season representativeness. These windows are defined as the monthly 

periods November-February, March-June, and July-October.  
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Once parameter sets are derived, they can be used with any combination of 𝐶𝑃𝐼 and 𝑇𝑠𝑠 time series to 

generate innovation estimates for modeled streamflow. The innovation estimate is then added to a 

corresponding transformed streamflow simulation estimate. The post-processed streamflow is then 

achieved by inverting the original transformation (Eqn. G-10). Parameter estimation was repeated across 

ranges of candidate 𝛽 values for 𝐶𝑃𝐼, selecting for the one producing maximum Nash-Sutcliffe Efficiency 

scores for each reservoir inflow model. Optimal values are shown in Table G-2. 

Table G-2. Beta parameter optima by simulation catchment.  

  
Hetch Hetchy 

Cherry-

Eleanor 
Don Pedro 

𝛽 0.917 0.989 0.994 

Since the observation of Don Pedro intervening flow (Eqn. G-2) is estimated by differencing computed 

flows, its uncertainty is assumed to be higher than that for the upcountry reservoir inflow calculations, 

since it disregards timing uncertainties and explicit channel reach gains and losses. As such, the model 

parameters for 𝑄𝐻𝐻 and 𝑄𝐶𝐻𝐸𝐿 are calculated and fixed, whereas the 𝑄𝐷𝑃 are calculated but subjected to 

additional computation. Since a post-processed model estimate for 𝑄𝐿𝑎𝐺 (Eqn. G-1) is sought, parameters 

for 𝑄𝐷𝑃 producing optimized 𝑄𝐿𝑎𝐺 are iteratively generated via Monte Carlo simulation, sampling 

randomly from normal distributions about the mean parameters derived from a first pass. The new set of 

parameters for 𝑄𝐷𝑃 that maximize the Nash-Sutcliffe Efficiency for 𝑄𝐿𝑎𝐺are selected as the final set. 

Ultimately, a set of 12 parameters is established for each runoff model, four parameters for each of three 

temporal windows (Table G-3).  

Table G-3. Post-processing model parameters by catchment and temporal window.  

 

Hetch Hetchy Cherry-Eleanor Don Pedro 

  Nov-Feb Mar-Jun Jul-Oct Nov-Feb Mar-Jun Jul-Oct Nov-Feb Mar-Jun Jul-Oct 

p1 -0.0034 0.0018 -0.0114 -0.0008 -0.0009 -0.0034 -0.0015 -0.0003 0.0000 

p2 -0.0116 -0.0012 0.0102 -0.0082 0.0105 0.0282 0.0192 0.0153 0.0164 

p3 2.5941 -0.2980 7.4146 0.7114 0.6885 3.0922 0.9963 0.4614 0.2473 

p4 2.7138 0.0350 -9.4688 1.5076 -7.8699 -25.8068 -17.7755 -17.0178 -18.7658 

 

 

 


